A293609 Triangle read by rows, a refinement of the central Stirling numbers of the first kind A187646, T(n, k) for n >= 0 and 0 <= k <= n.
1, 1, 0, 7, 4, 0, 90, 120, 15, 0, 1701, 3696, 1316, 56, 0, 42525, 129780, 84630, 12180, 210, 0, 1323652, 5233404, 5184894, 1492744, 104049, 792, 0, 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 0 [2] 7, 4, 0 [3] 90, 120, 15, 0 [4] 1701, 3696, 1316, 56, 0 [5] 42525, 129780, 84630, 12180, 210, 0 [6] 1323652, 5233404, 5184894, 1492744, 104049, 792, 0 [7] 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
Formula
T(n, k) = A293616(n, n, k) for k = 0..n. The main diagonal in terms of rows (!) of the array of triangles A293616. T_row(n) is row n of triangle A293616(n,.,.), i.e. T_row(0) = [1] is row 0 of A000007, T_row(1) = [1, 0] is row 1 of A173018, T_row(2) = [7, 4, 0] is row 2 of A062253, and so on.
Let h(n) = x^(-n)*(1 - x)^(2*n)*PolyLog(-2*n, n, x) and p(n) the polynomial given by the expansion of h(n) after replacing log(1 - x) by 0. Then T(n, k) is the k-th coefficient of p(n) for 0 <= k < n.