This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293617 #17 Feb 16 2025 08:33:51 %S A293617 1,1,0,1,1,0,1,3,1,0,1,6,2,1,0,1,10,3,7,3,0,1,15,4,25,12,2,0,1,21,5, %T A293617 65,30,6,1,0,1,28,6,140,60,12,15,7,0,1,36,7,266,105,20,90,50,12,0,1, %U A293617 45,8,462,168,30,350,195,60,6,0,1,55,9,750,252,42,1050,560,180,24,1,0 %N A293617 Array of triangles read by ascending antidiagonals, T(m, n, k) = Pochhammer(m, k) * Stirling2(n + m, k + m) with m >= 0, n >= 0 and 0 <= k <= n. %H A293617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NorlundPolynomial.html">Nørlund Polynomial</a>. %F A293617 T(m,n,k) = (k + m)*T(m, n-1, k) + k*T(m, n-1, k-1) + T(m-1, n, k) with boundary conditions T(0, n, k) = 0^n; T(m, n, k) = 0 if k<0 or k>n; and T(m, 0, k) = 0^k. %F A293617 T(m,n,k) = Pochhammer(m, k)*binomial(n + m, k + m)*NorlundPolynomial(n - k, -k - m). %e A293617 Array starts: %e A293617 m\j| 0 1 2 3 4 5 6 7 8 9 10 %e A293617 ---|----------------------------------------------------------------------- %e A293617 m=0| 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A293617 m=1| 1, 1, 1, 1, 3, 2, 1, 7, 12, 6, 1 %e A293617 m=2| 1, 3, 2, 7, 12, 6, 15, 50, 60, 24, 31 %e A293617 m=3| 1, 6, 3, 25, 30, 12, 90, 195, 180, 60, 301 %e A293617 m=4| 1, 10, 4, 65, 60, 20, 350, 560, 420, 120, 1701 %e A293617 m=5| 1, 15, 5, 140, 105, 30, 1050, 1330, 840, 210, 6951 %e A293617 m=6| 1, 21, 6, 266, 168, 42, 2646, 2772, 1512, 336, 22827 %e A293617 m=7| 1, 28, 7, 462, 252, 56, 5880, 5250, 2520, 504, 63987 %e A293617 m=8| 1, 36, 8, 750, 360, 72, 11880, 9240, 3960, 720, 159027 %e A293617 m=9| 1, 45, 9, 1155, 495, 90, 22275, 15345, 5940, 990, 359502 %e A293617 A000217, A001296,A027480,A002378,A001297,A293475,A033486,A007531,A001298 %e A293617 . %e A293617 m\j| ... 11 12 13 14 %e A293617 ---|----------------------------------------- %e A293617 m=0| ..., 0, 0, 0, 0, ... [A000007] %e A293617 m=1| ..., 15, 50, 60, 24, ... [A028246] %e A293617 m=2| ..., 180, 390, 360, 120, ... [A053440] %e A293617 m=3| ..., 1050, 1680, 1260, 360, ... [A294032] %e A293617 m=4| ..., 4200, 5320, 3360, 840, ... %e A293617 m=5| ..., 13230, 13860, 7560, 1680, ... %e A293617 m=6| ..., 35280, 31500, 15120, 3024, ... %e A293617 m=7| ..., 83160, 64680, 27720, 5040, ... %e A293617 m=8| ..., 178200, 122760, 47520, 7920, ... %e A293617 m=9| ..., 353925, 218790, 77220, 11880, ... %e A293617 A293476,A293608,A293615,A052762, ... %e A293617 . %e A293617 The parameter m runs over the triangles and j indexes the triangles by reading them by rows. Let T(m, n) denote the row [T(m, n, k) for 0 <= k <= n] and T(m) denote the triangle [T(m, n) for n >= 0]. Then for instance T(2) is the triangle A053440, T(3, 2) is row 2 of A294032 (which is [25, 30, 12]) and T(3, 2, 1) = 30. %e A293617 . %e A293617 Remark: To adapt the sequences A028246 and A053440 to our enumeration use the exponential generating functions exp(x)/(1 - y*(exp(x) - 1)) and exp(x)*(2*exp(x) - y*exp(2*x) + 2*y*exp(x) - 1 - y)/(1 - y*(exp(x) - 1))^2 instead of those indicated in their respective entries. %p A293617 A293617 := proc(m, n, k) option remember: %p A293617 if m = 0 then 0^n elif k < 0 or k > n then 0 elif n = 0 then 1 else %p A293617 (k+m)*A293617(m,n-1,k) + k*A293617(m,n-1,k-1) + A293617(m-1,n,k) fi end: %p A293617 for m in [$0..4] do for n in [$0..6] do print(seq(A293617(m, n, k), k=0..n)) od od; %p A293617 # Sample uses: %p A293617 A027480 := n -> A293617(n, 2, 1): A293608 := n -> A293617(n, 4, 2): %p A293617 # Flatten: %p A293617 a := proc(n) local w; w := proc(k) local t, s; t := 1; s := 1; %p A293617 while t <= k do s := s + 1; t := t + s od; [s - 1, s - t + k] end: %p A293617 seq(A293617(n - k, w(k)[1], w(k)[2]), k=0..n) end: seq(a(n), n = 0..11); %t A293617 T[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m]; %t A293617 For[m = 0, m < 7, m++, Print[Table[T[m, n, k], {n,0,6}, {k,0,n}]]] %t A293617 A293617Row[m_, n_] := Table[T[m, n, k], {k,0,n}]; %t A293617 (* Sample use: *) %t A293617 A293926Row[n_] := A293617Row[n, n]; %Y A293617 A000217(n) = T(n, 1, 0), A001296(n) = T(n, 2, 0), A027480(n) = T(n, 2, 1), %Y A293617 A002378(n) = T(n, 2, 2), A001297(n) = T(n, 3, 0), A293475(n) = T(n, 3, 1), %Y A293617 A033486(n) = T(n, 3, 2), A007531(n) = T(n, 3, 3), A001298(n) = T(n, 4, 0), %Y A293617 A293476(n) = T(n, 4, 1), A293608(n) = T(n, 4, 2), A293615(n) = T(n, 4, 3), %Y A293617 A052762(n) = T(n, 4, 4), A052787(n) = T(n, 5, 5), A000225(n) = T(1, n, 1), %Y A293617 A028243(n) = T(1, n, 2), A028244(n) = T(1, n, 3), A028245(n) = T(1, n, 4), %Y A293617 A032180(n) = T(1, n, 5), A228909(n) = T(1, n, 6), A228910(n) = T(1, n, 7), %Y A293617 A000225(n) = T(2, n, 0), A007820(n) = T(n, n, 0). %Y A293617 A028246(n,k) = T(1, n, k), A053440(n,k) = T(2, n, k), A294032(n,k) = T(3, n, k), %Y A293617 A293926(n,k) = T(n, n, k), A124320(n,k) = T(n, k, k), A156991(n,k) = T(k, n, n). %Y A293617 Cf. A293616. %K A293617 nonn,tabl %O A293617 0,8 %A A293617 _Peter Luschny_, Oct 20 2017