A293625 Generators of Fermat pseudoprimes to base 2 that are square pyramidal numbers: numbers k such that 12*k+1, 18*k+1 and 36*k+1 are all primes.
1, 15, 45, 56, 71, 85, 121, 141, 155, 176, 185, 206, 255, 275, 301, 346, 350, 380, 401, 470, 506, 511, 540, 680, 710, 745, 786, 801, 871, 946, 1025, 1156, 1200, 1211, 1326, 1380, 1395, 1421, 1480, 1505, 1515, 1590, 1676, 1696, 1710, 1830, 1941, 2066, 2171
Offset: 1
Keywords
Examples
1 is in the sequence since 12*1+1 = 13, 18*1+1 = 19 and 36*1+1 = 37 are all primes. P((2^(2(18*1+1))-1)/3) = P(91625968981) = 256409721410526509996425240557391 is a Fermat pseudoprime to base 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrzej Rotkiewicz, On pyramidal numbers of order 4, Elemente der Mathematik, Vol. 28 (1973), pp. 14-16.
Programs
-
Mathematica
Select[Range[1, 1000], PrimeQ[12#+1] && PrimeQ[18#+1] && PrimeQ[36#+1] &]
Comments