cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293625 Generators of Fermat pseudoprimes to base 2 that are square pyramidal numbers: numbers k such that 12*k+1, 18*k+1 and 36*k+1 are all primes.

Original entry on oeis.org

1, 15, 45, 56, 71, 85, 121, 141, 155, 176, 185, 206, 255, 275, 301, 346, 350, 380, 401, 470, 506, 511, 540, 680, 710, 745, 786, 801, 871, 946, 1025, 1156, 1200, 1211, 1326, 1380, 1395, 1421, 1480, 1505, 1515, 1590, 1676, 1696, 1710, 1830, 1941, 2066, 2171
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2017

Keywords

Comments

Rotkiewicz proved that if n is in the sequence then P((2^(2(18n+1))-1)/3) is a square pyramidal Fermat pseudoprime to base 2, where P(k) = k*(k+1)*(2k+1)/6 (A000330).
The generated numbers are terms in A293624. The first term is 256409721410526509996425240557391, the next 2 terms are about 3.683...*10^487 and 8.007...*10^1462.

Examples

			1 is in the sequence since 12*1+1 = 13, 18*1+1 = 19 and 36*1+1 = 37 are all primes. P((2^(2(18*1+1))-1)/3) = P(91625968981) = 256409721410526509996425240557391 is a Fermat pseudoprime to base 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[12#+1] && PrimeQ[18#+1] && PrimeQ[36#+1] &]