cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293628 Expansion of Product_{k>0} ((1 - q^(2*k))^3*(1 - q^(6*k))*(1 - q^(12*k)))/((1 - q^k)^4*(1 - q^(4*k))).

This page as a plain text file.
%I A293628 #14 Oct 15 2017 05:31:04
%S A293628 1,4,11,28,64,136,274,528,982,1772,3115,5352,9012,14904,24252,38888,
%T A293628 61527,96156,148584,227204,344056,516296,768206,1133952,1661326,
%U A293628 2416816,3492442,5014932,7157996,10158672,14339032,20134888,28133641,39124028,54161282,74652260
%N A293628 Expansion of Product_{k>0} ((1 - q^(2*k))^3*(1 - q^(6*k))*(1 - q^(12*k)))/((1 - q^k)^4*(1 - q^(4*k))).
%H A293628 Seiichi Manyama, <a href="/A293628/b293628.txt">Table of n, a(n) for n = 0..10000</a>
%H A293628 G. E. Andrews, R. P. Lewis, J. Lovejoy, <a href="http://dx.doi.org/10.4064/aa105-1-5">Partitions with designated summands</a>, Acta Arith. 105 (2002), no. 1, 51-66.
%F A293628 a(n) = (1/2) * A102186(3*n+2).
%F A293628 a(n) ~ 5^(1/4) * exp(sqrt(5*n/3)*Pi) / (2^(7/2) * 3^(5/4) * n^(3/4)). - _Vaclav Kotesovec_, Oct 15 2017
%t A293628 nmax = 50; CoefficientList[Series[Product[(1+x^k)^3 * (1-x^(6*k)) * (1-x^(12*k)) / ((1-x^k) * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 15 2017 *)
%Y A293628 Cf. A293426, A293629.
%Y A293628 Cf. A102186 (PDO(n)).
%K A293628 nonn
%O A293628 0,2
%A A293628 _Seiichi Manyama_, Oct 13 2017