This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293647 #22 May 28 2023 03:14:11 %S A293647 91,152,189,217,513,721,728,999,1027,1729,3087,3367,4104,4706,4921, %T A293647 4977,5256,5859,6832,7657,8587,8911,9919,10621,10712,12663,12691, %U A293647 12824,14911,15093,15561,16120,16263,20683,21014,23058,23877,25669,27937,28063,31519,32984 %N A293647 Positive numbers that are the sum of two (possibly negative) cubes in at least 2 ways (primitive solutions). %C A293647 Primitive means that the 4 summands are coprime. %C A293647 Not every term is the sum of two coprime cubes. %C A293647 a(1) = A047696(2). %H A293647 Robert Israel, <a href="/A293647/b293647.txt">Table of n, a(n) for n = 1..1000</a> (first 352 terms from Rosalie Fay) %e A293647 189 = 4^3 + 5^3 = 6^3 + (-3)^3 and 4, 5, 6, -3 are coprime, so 189 is in the sequence. %e A293647 35208 = 34^3 + (-16)^3 = 33^3 + (-9)^3 and 34, -16, 33, -9 are coprime, so 35208 is in the sequence. %p A293647 g:= proc(s,n) local x; %p A293647 x:= s/2 + sqrt(12*n/s-3*s^2)/6; %p A293647 if not x::integer then return NULL fi; %p A293647 [x,s - x]; %p A293647 end proc: %p A293647 filter:= proc(n) %p A293647 local pairs, i,j; %p A293647 pairs:= map(g, numtheory:-divisors(n),n); %p A293647 for i from 2 to nops(pairs) do %p A293647 for j from 1 to i-1 do %p A293647 if igcd(op(pairs[i]),op(pairs[j]))=1 then return true fi %p A293647 od od; %p A293647 false %p A293647 end proc: %p A293647 select(filter, [seq(seq(9*i+j,j=[1,2,7,8,9]),i=0..4000)]); # _Robert Israel_, Oct 22 2017 %t A293647 g[s_, n_] := Module[{x}, x = s/2 + Sqrt[12*n/s - 3*s^2]/6; If[!IntegerQ[x], Return[Nothing]]; {x, s - x}]; %t A293647 filter[n_] := Module[{pairs, i, j}, pairs = g[#, n]& /@ Divisors[n]; For[i = 2, i <= Length[pairs], i++,For[j = 1, j <= i - 1, j++, If[GCD @@ Join[pairs[[i]], pairs[[j]]] == 1, Return[True]]]]; False]; %t A293647 Select[Flatten[Table[Table[9*i + j, {j, {1, 2, 7, 8, 9}}], {i, 0, 4000}]], filter] (* _Jean-François Alcover_, May 28 2023, after _Robert Israel_ *) %Y A293647 Cf. A051347 (all solutions); A018850 (positive cubes); A293648 (only coprime); A293645, A293650 %K A293647 nonn %O A293647 1,1 %A A293647 _Rosalie Fay_, Oct 16 2017