cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293647 Positive numbers that are the sum of two (possibly negative) cubes in at least 2 ways (primitive solutions).

This page as a plain text file.
%I A293647 #22 May 28 2023 03:14:11
%S A293647 91,152,189,217,513,721,728,999,1027,1729,3087,3367,4104,4706,4921,
%T A293647 4977,5256,5859,6832,7657,8587,8911,9919,10621,10712,12663,12691,
%U A293647 12824,14911,15093,15561,16120,16263,20683,21014,23058,23877,25669,27937,28063,31519,32984
%N A293647 Positive numbers that are the sum of two (possibly negative) cubes in at least 2 ways (primitive solutions).
%C A293647 Primitive means that the 4 summands are coprime.
%C A293647 Not every term is the sum of two coprime cubes.
%C A293647 a(1) = A047696(2).
%H A293647 Robert Israel, <a href="/A293647/b293647.txt">Table of n, a(n) for n = 1..1000</a> (first 352 terms from Rosalie Fay)
%e A293647 189 = 4^3 + 5^3 = 6^3 + (-3)^3 and 4, 5, 6, -3 are coprime, so 189 is in the sequence.
%e A293647 35208 = 34^3 + (-16)^3 = 33^3 + (-9)^3 and 34, -16, 33, -9 are coprime, so 35208 is in the sequence.
%p A293647 g:= proc(s,n) local x;
%p A293647   x:= s/2 + sqrt(12*n/s-3*s^2)/6;
%p A293647   if not x::integer then return NULL fi;
%p A293647   [x,s - x];
%p A293647 end proc:
%p A293647 filter:= proc(n)
%p A293647   local pairs, i,j;
%p A293647   pairs:= map(g, numtheory:-divisors(n),n);
%p A293647   for i from 2 to nops(pairs) do
%p A293647     for j from 1 to i-1 do
%p A293647       if igcd(op(pairs[i]),op(pairs[j]))=1 then return true fi
%p A293647   od od;
%p A293647   false
%p A293647 end proc:
%p A293647 select(filter, [seq(seq(9*i+j,j=[1,2,7,8,9]),i=0..4000)]); # _Robert Israel_, Oct 22 2017
%t A293647 g[s_, n_] := Module[{x}, x = s/2 + Sqrt[12*n/s - 3*s^2]/6;   If[!IntegerQ[x], Return[Nothing]]; {x, s - x}];
%t A293647 filter[n_] := Module[{pairs, i, j}, pairs = g[#, n]& /@ Divisors[n]; For[i = 2, i <= Length[pairs], i++,For[j = 1, j <= i - 1, j++, If[GCD @@ Join[pairs[[i]], pairs[[j]]] == 1, Return[True]]]]; False];
%t A293647 Select[Flatten[Table[Table[9*i + j, {j, {1, 2, 7, 8, 9}}], {i, 0, 4000}]], filter] (* _Jean-François Alcover_, May 28 2023, after _Robert Israel_ *)
%Y A293647 Cf. A051347 (all solutions); A018850 (positive cubes); A293648 (only coprime); A293645, A293650
%K A293647 nonn
%O A293647 1,1
%A A293647 _Rosalie Fay_, Oct 16 2017