This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293655 #24 Mar 03 2024 10:16:19 %S A293655 181,5221,11309,19637,21577,22805,43151,69451,74969,76845,82709,83539, %T A293655 85029,86283,86581,91205,148245,165013,165061,165418,166027,170021, %U A293655 172213,172615,173095,173101,173162,173331,180405,182433,184587,184885,185363,201829,282713 %N A293655 Numbers having in binary representation more zeros than their squares. %H A293655 Chai Wah Wu, <a href="/A293655/b293655.txt">Table of n, a(n) for n = 1..10000</a> %e A293655 181 in base 2 is 10110101, with 3 zeros, and 181^2 is 111111111111001, with 2 zeros. %t A293655 Select[Range[3*10^5], DigitCount[#, 2, 0] > DigitCount[#^2, 2, 0] &] (* _Michael De Vlieger_, Feb 21 2018 *) %o A293655 (Python) %o A293655 def count0(n): %o A293655 return bin(n)[2:].count('0') %o A293655 for n in range(1000000): %o A293655 if count0(n*n) < count0(n): %o A293655 print(str(n), end=',') %o A293655 (PARI) nbz(n) = my(b=binary(n)); #b - hammingweight(n); %o A293655 isok(n) = nbz(n) > nbz(n^2); \\ _Michel Marcus_, Feb 12 2018 %Y A293655 Cf. A023416, A094694. %K A293655 nonn,base %O A293655 1,1 %A A293655 _Alex Ratushnyak_, Feb 06 2018