This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293662 #7 Jan 06 2018 22:06:54 %S A293662 11,13,17,19,23,37,43,47,67,71,73,79,101,149,173,181,211,233,347,421, %T A293662 443,613,641,647,673,719,727,971,1123,1361,1429,1609,1697,2153,2179, %U A293662 3371,3547,3833,4019,4091,4099,4229,5227,5261,5281,5683,5689,5741,5749,5821 %N A293662 Base-9 circular primes that are not base-9 repunits. %C A293662 Conjecture: The sequence is finite. %e A293662 101 written in base 9 is 122. The base-9 numbers 122, 221, 212 written in base 10 are 101, 181, 173, respectively and all those numbers are prime, so 101, 173 and 181 are terms of the sequence. %t A293662 With[{b = 9}, Select[Prime@ Range[PrimePi@ b + 1, 10^3], Function[w, And[AllTrue[Array[FromDigits[RotateRight[w, #], b] &, Length@ w - 1], PrimeQ], Union@ w != {1} ]]@ IntegerDigits[#, b] &]] (* _Michael De Vlieger_, Dec 30 2017 *) %o A293662 (PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v %o A293662 decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i]) %o A293662 is_circularprime(p, base) = my(db=digits(p, base), r=rot(db), i=0); if(vecmin(db)==0, return(0), while(1, dec=decimal(r, base); if(!ispseudoprime(dec), return(0)); r=rot(r); if(r==db, return(1)))) %o A293662 forprime(p=1, , if(vecmin(digits(p, 9))!=vecmax(digits(p, 9)), if(is_circularprime(p, 9), print1(p, ", ")))) %Y A293662 Cf. A007095, A293142. %Y A293662 Cf. base-b nonrepunit circular primes: A293657 (b=4), A293658 (b=5), A293659 (b=6), A293660 (b=7), A293661 (b=8), A293663 (b=10). %K A293662 nonn,base %O A293662 1,1 %A A293662 _Felix Fröhlich_, Dec 30 2017