This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293664 #15 Oct 16 2017 08:45:24 %S A293664 1,2,2,4,2,4,4,7,2,4,4,8,4,7,8,11,2,4,4,8,4,8,7,12,4,7,8,13,8,12,13, %T A293664 16,2,4,4,8,4,8,8,13,4,8,7,14,8,13,14,17,4,7,8,13,8,14,13,18,8,12,14, %U A293664 19,15,18,19,22,2,4,4,8,4,8,8,14,4,8,8,15,7,12 %N A293664 For n >= 0, let E_n be the set of exponents in expression of 2*n as a sum of distinct powers of 2 (2*n = Sum_{e in E_n} 2^e); a(n) = number of distinct values taken by the expression Sum_{e in E_n} s(e)*2^e when s runs over all functions from the positive numbers to the set { +1, -1 }. %C A293664 More informally, any number n encodes a finite sets of positive numbers, say { e_1, e_2, ..., e_h }, and a(n) gives the number of distinct values of the form +- e_1 +- e_2 ... +- e_h. %C A293664 The set of exponents in expression for n as a sum of distinct powers of 2 corresponds to the n-th row of A133457. %C A293664 A number n belongs to A293576 iff a(n) is odd. %C A293664 a(n) <= 2^A000120(n) for any n >= 0. %H A293664 Rémy Sigrist, <a href="/A293664/b293664.txt">Table of n, a(n) for n = 0..8192</a> %e A293664 For n = 15: %e A293664 - E_15 = { 1, 2, 3, 4 }, %e A293664 - the possible "plus-minus" sums are: %e A293664 +4 +3 +2 +1 = 10 (1st value) %e A293664 +4 +3 +2 -1 = 8 (2nd value) %e A293664 +4 +3 -2 +1 = 6 (3rd value) %e A293664 +4 +3 -2 -1 = 4 (4th value) %e A293664 +4 -3 +2 +1 = 4 (already seen) %e A293664 +4 -3 +2 -1 = 2 (5th value) %e A293664 +4 -3 -2 +1 = 0 (6th value) %e A293664 +4 -3 -2 -1 = -2 (7th value) %e A293664 -4 +3 +2 +1 = 2 (already seen) %e A293664 -4 +3 +2 -1 = 0 (already seen) %e A293664 -4 +3 -2 +1 = -2 (already seen) %e A293664 -4 +3 -2 -1 = -4 (8th value) %e A293664 -4 -3 +2 +1 = -4 (already seen) %e A293664 -4 -3 +2 -1 = -6 (9th value) %e A293664 -4 -3 -2 +1 = -8 (10th value) %e A293664 -4 -3 -2 -1 = -10 (11th value) %e A293664 - hence, a(15) = 11. %o A293664 (PARI) a(n) = { my (v=Set(0)); my (b = Vecrev(binary(n))); for (i=1, #b, if (b[i], v = setunion(Set(vector(#v, k, v[k]-i)), Set(vector(#v, k, v[k]+i))););); return (#v); } %Y A293664 Cf. A133457, A293576. %K A293664 nonn,base %O A293664 0,2 %A A293664 _Rémy Sigrist_, Oct 14 2017