cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293670 Square array made of (W, N, S, E) quadruplets read by antidiagonals. Numeric structure of an anamorphosis of A002024 (see comments).

This page as a plain text file.
%I A293670 #9 Nov 11 2019 00:50:28
%S A293670 1,-1,0,2,1,0,2,-1,1,2,0,3,1,1,2,0,3,-1,2,2,1,3,0,4,1,2,2,1,3,0,4,-1,
%T A293670 3,2,2,3,1,4,0,5,1,3,2,2,3,1,4,0,5,-1,4,2,3,3,2,4,1,5,0,6,1,4,2,3,3,2,
%U A293670 4,1,5,0,6,-1,5,2,4,3,3,4,2,5,1,6,0,7,1,5,2,4,3,3,4,2,5,1,6,0,7,-1,6,2,5,3,4,4,3,5,2,6,1,7,0,8,1,6,2,5,3,4,4,3,5,2,6,1,7,0,8,-1,7,2,6,3,5,4,4,5,3,6,2,7,1,8,0,9,1,7,2,6,3,5,4,4,5,3,6,2,7,1,8,0,9,-1
%N A293670 Square array made of (W, N, S, E) quadruplets read by antidiagonals. Numeric structure of an anamorphosis of A002024 (see comments).
%C A293670 Numeric characterization:
%C A293670 Row n is the value of a list after n iterations of the following algorithm:
%C A293670 - start with an empty list (assimilable to row number 0)
%C A293670 - Iteration n consists of
%C A293670 -- if n is odd, appending 1 to the left of the list and -1 to the right;
%C A293670 -- if n is even, replacing each value in the list by its complement to n/2.
%C A293670 Underlying definition and interest: this sequence represents a square array in which each cell is a structure made of 4 values arranged in W/N/S/E fashion. These values are twice the areas of elementary right triangles that enter the composition of quadrilaterals delimited by two families of lines, with the following equations:
%C A293670 - for m = 1, 2, 3, ...: y = mx - (m-1)^2 {x <= m-1}
%C A293670 - for n = -1, 0, 1, ...: y = -nx - (n+1)^2 {x >= 1-n}
%C A293670 Globally these quadrilaterals form an anamorphosis of A002024. See provided link for explanations and illustrations.
%H A293670 Luc Rousseau, <a href="/A293670/a293670_1.pdf">Relation between A293670 and A002024 - Numeric structure of an anamorphosis</a>
%e A293670 Array begins (characterization)(x stands for -1):
%e A293670               1 x
%e A293670               0 2
%e A293670             1 0 2 x
%e A293670             1 2 0 3
%e A293670           1 1 2 0 3 x
%e A293670           2 2 1 3 0 4
%e A293670         1 2 2 1 3 0 4 x
%e A293670         3 2 2 3 1 4 0 5
%e A293670       1 3 2 2 3 1 4 0 5 x
%e A293670       4 2 3 3 2 4 1 5 0 6
%e A293670     1 4 2 3 3 2 4 1 5 0 6 x
%e A293670     5 2 4 3 3 4 2 5 1 6 0 7
%e A293670   1 5 2 4 3 3 4 2 5 1 6 0 7 x
%e A293670 Or (definition)(to be read by antidiagonals):
%e A293670     x     x     x     x
%e A293670   1   2 2   3 3   4 4   5 ...
%e A293670     0     0     0     0
%e A293670     0     0     0     0
%e A293670   1   2 2   3 3   4 4   5 ...
%e A293670     1     1     1     1
%e A293670     1     1     1     1
%e A293670   1   2 2   3 3   4 4   5 ...
%e A293670     2     2     2     2
%e A293670     2     2     2     2
%e A293670   1   2 2   3 3   4 4   5 ...
%e A293670     3     3     3     3
%e A293670     3     3     3     3
%e A293670   1   2 2   3 3   4 4   5 ...
%e A293670     4     4     4     4
%e A293670   ...
%o A293670 (PARI)
%o A293670 evolve(L,n)=if(n%2==1,listinsert(L,1,1);listinsert(L,-1,#L+1),L=apply(v->n/2-v,L));L
%o A293670 N=30;L=List();for(n=1,N,L=evolve(L,n);for(i=1,#L,print1(L[i],", "));print())
%Y A293670 Cf. A293578, A002024.
%K A293670 sign,tabf
%O A293670 1,4
%A A293670 _Luc Rousseau_, Oct 14 2017