cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293686 8-digit numbers (padded with leading zeros where necessary) in which the sum of the number consisting of the first four digits and the number consisting of the last four digits equals the number consisting of the middle four digits.

This page as a plain text file.
%I A293686 #49 Nov 06 2023 02:38:03
%S A293686 0,10099,10100,20199,20200,30299,30300,40399,40400,50499,50500,60599,
%T A293686 60600,70699,70700,80799,80800,90899,90900,100999,101000,111099,
%U A293686 111100,121199,121200,131299,131300,141399,141400,151499,151500,161599,161600,171699,171700
%N A293686 8-digit numbers (padded with leading zeros where necessary) in which the sum of the number consisting of the first four digits and the number consisting of the last four digits equals the number consisting of the middle four digits.
%C A293686 Zero can be a leading digit.
%C A293686 The sequence is the 8-digit analog to A263194.
%C A293686 This sequence contains 5050 terms. - _David A. Corneth_, Oct 14 2017
%H A293686 David A. Corneth, <a href="/A293686/b293686.txt">Table of n, a(n) for n = 1..5050</a> (full sequence; first 1045 terms from Vincenzo Librandi)
%e A293686 131299 is a term because 0013 + 1299 = 1312 and 1312 is the string of the middle four digits of 00131299.
%t A293686 dn8Q[n_]:=Module[{d=PadLeft[IntegerDigits[n],8,0]},FromDigits[ d[[1;;4]]]+ FromDigits[ d[[5;;8]]]==FromDigits[d[[3;;6]]]]; Select[Range[ 0,10^6], dn8Q]
%o A293686 (Magma) [n: n in [0..2*10^5] | (n div 10000+n) mod 10000 eq (n div 100) mod 10000]; // _Vincenzo Librandi_, Oct 15 2017
%o A293686 (PARI) is(n) = n < 10^8 && n\10000 + n%10000 == (n \ 100) % 10000 \\ _David A. Corneth_, Oct 14 2017
%o A293686 (PARI) seq() = {my(t = 0, res = List(), c1, c2); while(t < 10^8, listput(res, t); c2 = (t\10000)%100; if(c2 < 99, t+= 10100, c1 = t\10^6; t = (c1+1)*10^6 + (c1 + 2)*10^4 + 98 - c1)); for(i=2, #res, if(res[i] > 10^6, listsort(res); return(res)); listput(res, res[i]-1))} \\ (this program produces the full sequence) _David A. Corneth_, Oct 16 2017
%Y A293686 Cf. A037156, A263194.
%K A293686 nonn,base,easy,fini,full
%O A293686 1,2
%A A293686 _Harvey P. Dale_, Oct 14 2017