cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293695 Numbers z such that x^2 + y^8 = z^2 (with positive integers x and y) and gcd(x, y, z) = 1.

This page as a plain text file.
%I A293695 #16 Oct 19 2017 09:46:10
%S A293695 65,3281,6625,16385,22945,195313,198593,390689,407009,419905,810529,
%T A293695 2882401,2885681,3077713,4194305,4200865,4584929,5764865,5781185,
%U A293695 6184705,9959105,21523361,21718673,24405761,25000001,25006561,30764801,43046785,43063105,47241025
%N A293695 Numbers z such that x^2 + y^8 = z^2 (with positive integers x and y) and gcd(x, y, z) = 1.
%C A293695 Subsequence of A293694.
%H A293695 Chai Wah Wu, <a href="/A293695/b293695.txt">Table of n, a(n) for n = 1..10000</a>
%e A293695 63^2 + 2^8 = 65^2 and gcd(63, 2, 65) = 1, 65 is a term.
%e A293695 24999999^2 + 10^8 = 25000001^2 and gcd(24999999, 10, 25000001) = 1, 25000001 is a term.
%t A293695 z={}; Do[If[IntegerQ[(n^2 - y^8)^(1/2)] && GCD[y, n]==1, AppendTo[z, n]], {n, 5.1*10^7}, {y, (n^2 - 1)^(1/8)}]; z
%Y A293695 Cf. A293284, A293691, A293693, A293694.
%K A293695 nonn
%O A293695 1,1
%A A293695 _XU Pingya_, Oct 16 2017