cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A293697 a(n) is the sum of prime numbers between 2^n+1 and 2^(n+1).

Original entry on oeis.org

2, 3, 12, 24, 119, 341, 1219, 4361, 16467, 57641, 208987, 780915, 2838550, 10676000, 39472122, 148231324, 559305605, 2106222351, 7995067942, 30299372141, 115430379568, 440354051430, 1683364991290, 6448757014608, 24754017328490, 95132828618112, 366232755206338
Offset: 0

Views

Author

Olivier Gérard, Oct 15 2017

Keywords

Examples

			From _Gus Wiseman_, Jun 02 2024: (Start)
Row-sums of:
   2
   3
   5   7
  11  13
  17  19  23  29  31
  37  41  43  47  53  59  61
  67  71  73  79  83  89  97 101 103 107 109 113 127
(End)
		

Crossrefs

Cf. A036378 (number of primes summed).
Cf. A293696 (triangle of partial sums).
Minimum is A014210 or A104080, indices A372684.
Maximum is A014234, delta A013603.
Counting all numbers (not just prime) gives A049775.
For squarefree instead of prime numbers we have A373123, length A077643.
For prime indices we have A373124.
Partial sums give A130739(n+1).

Programs

  • Mathematica
    Table[Plus @@
      Table[Prime[i], {i, PrimePi[2^(n)] + 1, PrimePi[2^(n + 1)]}], {n, 0,
       24}]

A293677 a(n) is the greatest integer k such that k/Fibonacci(n) < Pi.

Original entry on oeis.org

0, 3, 3, 6, 9, 15, 25, 40, 65, 106, 172, 279, 452, 731, 1184, 1916, 3100, 5017, 8117, 13134, 21252, 34387, 55640, 90028, 145669, 235697, 381367, 617065, 998432, 1615498, 2613930, 4229428, 6843359, 11072788, 17916147, 28988936, 46905084, 75894020, 122799104
Offset: 0

Views

Author

Clark Kimberling, Oct 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; f[n_] := Fibonacci[n];
    Table[Floor[Pi*f[n]], {n, 0, z}];   (* A293677 *)
    Table[Ceiling[Pi*f[n]], {n, 0, z}]; (* A293678 *)
    Table[Round[Pi*f[n]], {n, 0, z}];   (* A293696 *)

Formula

a(n) = floor(Pi*Fibonacci(n)).
a(n) = A293678(n) - 1 for n > 0.

A294154 Base-2 logarithm of product of primes between 2^n+1 and 2^(n+1).

Original entry on oeis.org

1, 1, 5, 7, 22, 39, 84, 173, 367, 716, 1444, 2945, 5823, 11817, 23457, 47117, 94496, 188670, 378296, 755437, 1512435, 3024742, 6049260, 12099777, 24205776, 48402649, 96809896, 193632363, 387252738, 774544273, 1549044943
Offset: 0

Views

Author

Olivier Gérard, Oct 24 2017

Keywords

Comments

Inspired by Bertrand's postulate and complexity of algorithms using Farey fraction sets of size 2^n.
The log of this sequence seems linear after a few terms.

Crossrefs

Cf. A036378 (number of primes between 2^n+1 and 2^(n+1)).
Cf. A293696, A293697 (additive view of the primes between 2^n+1 and 2^(n+1)).

Programs

  • Mathematica
    Table[Floor[
      Log[2, Times @@
        Table[Prime[i], {i, PrimePi[2^(n)] + 1,
          PrimePi[2^(n + 1)]}]]], {n, 0, 20}]

Extensions

a(26)-a(30) from Robert Price, Nov 30 2017
Showing 1-3 of 3 results.