cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293703 a(n) is the length of the longest palindromic subsequence in the first differences of the list of the first n negative and positive roots of floor(tan(k))=1.

This page as a plain text file.
%I A293703 #26 Feb 22 2018 11:04:30
%S A293703 1,3,5,7,9,11,13,15,15,17,17,19,19,21,21,23,23,25,27,29,31,33,35,37,
%T A293703 39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,
%U A293703 85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117
%N A293703 a(n) is the length of the longest palindromic subsequence in the first differences of the list of the first n negative and positive roots of floor(tan(k))=1.
%C A293703 -A293751 are the negative roots of floor(tan(k))=1.
%C A293703 Each increment of n increases the length of the sequence of the first differences by two, whereby the length of the palindrome increases by 0, 1 or 2.
%H A293703 V.J. Pohjola, <a href="/A293703/b293703.txt">Table of n, a(n) for n = 1..3001</a>
%H A293703 V.J. Pohjola, <a href="https://palindromesdotblog.files.wordpress.com/2018/02/lenpalscon-1-20-a293703.pdf">Line plot for n=1...20</a>
%H A293703 V.J. Pohjola, <a href="https://palindromesdotblog.files.wordpress.com/2018/02/lenpalscon-1-200-a293703.pdf">Line plot for n=1...200</a>
%H A293703 V.J. Pohjola, <a href="https://palindromesdotblog.files.wordpress.com/2018/02/lenpalscon-1-3000-a293703.pdf">Line plot for n=1...3000</a>
%e A293703 For n = 1, the roots are -18, 1; the first differences are 19; the longest palindrome is 19; so a(n) = 1.
%e A293703 For n = 2, the roots are -21, -18, 1, 4; the first differences are 3, 19, 3; the longest palindrome is 3, 19, 3; so a(n) = 3.
%e A293703 For n = 8, the roots are -87, -84, -65, -62, -43, -40, -21, -18, 1, 4, 23, 26, 45, 48, 67, 70; the first differences are 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3; the longest palindrome is 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3; so a(n) = 15.
%e A293703 For n = 9, the roots are -90, -87, -84, -65, -62, -43, -40, -21, -18, 1, 4, 23, 26, 45, 48, 67, 70, 89; first differences are 16, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19; the longest palindrome is 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3, 19, 3; so a(n) = 15.
%t A293703 rootsA = {}; Do[
%t A293703 If[Floor[Tan[i]] == 1, AppendTo[rootsA, i]], {i, -10^5, 10^5}]
%t A293703 lenN = Length[Select[rootsA, # < 0 &]]
%t A293703 r = 200; roots = rootsA[[lenN - r ;; lenN + r + 1]]
%t A293703 diff = Differences[roots]
%t A293703 center = (Length[diff] + 1)/2; kmax = (Length[diff] + 1)/2 -
%t A293703   1; pals = {}; lenpals = {}; lenpal = 1;
%t A293703 Do[diffk = diff[[center - k ;; center + k]];
%t A293703 lendiffk = Length[diffk]; w = 3;
%t A293703 lenpal = lenpal + 2; (Label[alku]; w = w - 1;
%t A293703   pmax = lendiffk - lenpal - (w - 1);
%t A293703   t = Table[diffk[[p ;; lenpal + w + p - 1]], {p, 1, pmax}];
%t A293703   s = Select[t, # == Reverse[#] &]; If[s != {}, Goto[end], Goto[alku]];
%t A293703   Label[end]); AppendTo[pals, First[s]];
%t A293703 AppendTo[lenpals, Length[Flatten[First[s]]]];
%t A293703 lenpal = Length[Flatten[First[s]]], {k, 0, kmax}]
%t A293703 lenpals (*a[n]=lenpals[[n]]*)
%Y A293703 Cf. A293698, A293751, A293700, A293701, A293706, A293699, A293702, A293704, A293705.
%K A293703 nonn
%O A293703 1,2
%A A293703 _V.J. Pohjola_, Oct 20 2017