cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293722 Number of distinct nonempty subsequences of the binary expansion of n.

This page as a plain text file.
%I A293722 #25 Apr 27 2020 17:34:06
%S A293722 1,1,3,2,5,6,5,3,7,10,11,9,8,9,7,4,9,14,17,15,16,19,17,12,11,15,16,13,
%T A293722 11,12,9,5,11,18,23,21,24,29,27,20,21,29,32,27,25,28,23,15,14,21,25,
%U A293722 22,23,27,24,17,15,20,21,17,14,15,11,6,13,22,29,27,32,39,37
%N A293722 Number of distinct nonempty subsequences of the binary expansion of n.
%C A293722 The subsequence does not need to consist of adjacent terms.
%H A293722 Andrew Howroyd, <a href="/A293722/b293722.txt">Table of n, a(n) for n = 0..4096</a>
%H A293722 Geeks for Geeks, <a href="https://www.geeksforgeeks.org/count-distinct-subsequences/">Count Distinct Subsequences</a>
%F A293722 a(2^n) = 2n + 1.
%F A293722 a(2^n-1) = n if n>0.
%F A293722 a(n) = A293170(n) - 1. - _Andrew Howroyd_, Apr 27 2020
%e A293722 a(4) = 5 because 4 = 100_2, and the distinct subsequences of 100 are 0, 1, 00, 10, 100.
%e A293722 Similarly a(7) = 3, because 7 = 111_2, and 111 has only three distinct subsequences: 1, 11, 111.
%e A293722 a(9) = 10: 9 = 1001_2, and we get 0, 1, 00, 01, 10, 11, 001, 100, 101, 1001.
%o A293722 (Python)
%o A293722 def a(n):
%o A293722     if n == 0: return 1
%o A293722     r, l = 1, [0, 0]
%o A293722     while n:
%o A293722         r, l[n%2] = 2*r - l[n%2], r
%o A293722         n >>= 1
%o A293722     return r - 1
%Y A293722 Cf. A141297.
%Y A293722 If the empty subsequence is also counted, we get A293170.
%K A293722 nonn,base,easy
%O A293722 0,3
%A A293722 _Orson R. L. Peters_, Oct 15 2017
%E A293722 Terms a(50) and beyond from _Andrew Howroyd_, Apr 27 2020