A293727 Numbers k such that c(k,0) < c(k,1), where c(k,d) = number of d's in the first k digits of the base-2 expansion of sqrt(2).
1, 3, 4, 5, 6, 7, 8, 9, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 300; u = N[Sqrt[2], z]; d = RealDigits[u, 2][[1]]; t[n_] := Take[d, n]; c[0, n_] := Count[t[n], 0]; c[1, n_] := Count[t[n], 1]; Table[{n, c[0, n], c[1, n]}, {n, 1, 100}] u = Select[Range[z], c[0, #] == c[1, #] &] (* A293725 *) u/2 (* A293726 *) Select[Range[z], c[0, #] < c[1, #] &] (* A293727 *) Select[Range[z], c[0, #] > c[1, #] &] (* A293728 *)
Comments