A293765 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 10, 20, 38, 67, 115, 193, 321, 528, 864, 1408, 2289, 3715, 6023, 9758, 15802, 25583, 41409, 67017, 108452, 175496, 283976, 459501, 743507, 1203039, 1946578, 3149650, 5096262, 8245947, 13342245, 21588229, 34930512, 56518780, 91449333, 147968155
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + b(1) + 2 = 10; Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A293765 *) Table[b[n], {n, 0, 10}]
Comments