This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293766 #7 Nov 02 2017 09:20:31 %S A293766 1,3,11,22,42,74,127,213,353,581,950,1548,2516,4083,6619,10723,17364, %T A293766 28110,45498,73634,119159,192821,312009,504860,816900,1321792,2138725, %U A293766 3460551,5599311,9059898,14659246,23719182,38378467,62097689,100476197,162573928 %N A293766 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 3, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A293766 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values of each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4: %C A293766 Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio. See A293358 for a guide to related sequences. %H A293766 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.pdf">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A293766 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A293766 a(2) = a(1) + a(0) + b(1) + 3 = 11; %e A293766 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...) %t A293766 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A293766 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A293766 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 3; %t A293766 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A293766 Table[a[n], {n, 0, 40}] (* A293766 *) %t A293766 Table[b[n], {n, 0, 10}] %Y A293766 Cf. A001622 (golden ratio), A293765. %K A293766 nonn,easy %O A293766 0,2 %A A293766 _Clark Kimberling_, Oct 29 2017