cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293778 Number of centrally symmetric diagonal Latin squares of order n.

This page as a plain text file.
%I A293778 #30 Aug 08 2023 22:22:35
%S A293778 1,0,0,48,960,0,14192640,5449973760,118753937326080
%N A293778 Number of centrally symmetric diagonal Latin squares of order n.
%C A293778 Centrally symmetric diagon Latin square is a square with one-to-one correspondence between elements within all pairs a[i][j] and a[n-1-i][n-1-j] (numbering of rows and columns from 0 to n-1).
%C A293778 It seems that a(n)=0 for n=2 and n=3 (diagonal Latin squares of these sizes don't exist) and for n=2 (mod 4).
%C A293778 Every doubly symmetric diagonal Latin square also has central symmetry. The converse is not true in general. It follows that A292517(n) <= a(4n). - _Eduard I. Vatutin_, May 26 2021
%H A293778 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&amp;m=89455#post89455">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian)
%H A293778 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, V. S. Titov, <a href="http://evatutin.narod.ru/evatutin_co_dls_centr_symm.pdf">Properties of central symmetry for diagonal Latin squares</a>, High-performance computing systems and technologies, No. 1 (8), 2018, pp. 74-78. (in Russian)
%H A293778 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, V. S. Titov, <a href="https://jpit.az/uploads/article/az/2019_2/CENTRAL_SYMMETRY_PROPERTIES_FOR_DIAGONAL_LATIN_SQUARES.pdf">Central Symmetry Properties for Diagonal Latin Squares</a>, Problems of Information Technology, No. 2, 2019, pp. 3-8. doi: 10.25045/jpit.v10.i2.01.
%H A293778 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
%H A293778 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1635">On the interconnection between double and central symmetries in diagonal Latin squares</a> (in Russian).
%H A293778 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%F A293778 a(n) = A293777(n) * n!.
%e A293778 0 1 2 3 4 5 6 7 8
%e A293778 6 3 0 2 7 8 1 4 5
%e A293778 3 2 1 8 6 7 0 5 4
%e A293778 7 8 6 5 1 3 4 0 2
%e A293778 8 6 4 7 2 0 5 3 1
%e A293778 2 7 5 6 8 4 3 1 0
%e A293778 5 4 7 0 3 1 8 2 6
%e A293778 4 5 8 1 0 2 7 6 3
%e A293778 1 0 3 4 5 6 2 8 7
%Y A293778 Cf. A292516, A292517, A293777, A340545.
%K A293778 nonn,more,hard
%O A293778 1,4
%A A293778 _Eduard I. Vatutin_, Oct 16 2017