This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293807 #16 May 03 2020 08:03:12 %S A293807 1,1,1,4,9,14,19,24,39,63,87,111,155,235,329,423,552,771,1091,1430, %T A293807 1825,2400,3295,4392,5597,7117,9367,12476,16077,20182,25677,33472, %U A293807 43406,54578,68109,86475,111316,140965,174836,217520,275130,348555,433578,533640,662620,831747 %N A293807 a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} 1/(1 - x^a(k))^a(k). %C A293807 a(n) = number of partitions of n into preceding terms starting from a(1), a(2), a(3), ... (for n > 1), with a(1) type of part a(1), a(2) types of part a(2), ... %H A293807 Alois P. Heinz, <a href="/A293807/b293807.txt">Table of n, a(n) for n = 0..10000</a> %H A293807 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A293807 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} 1/(1 - x^a(n))^a(n). %e A293807 a(3) = 4 because we have [1a, 1a, 1a], [1a, 1a, 1b], [1a, 1b, 1b] and [1b, 1b, 1b]. %e A293807 G.f. = -x - 2*x^2 + 1/((1 - x)*(1 - x)*(1 - x^4)^4*(1 - x^9)^9*(1 - x^14)^14*(1 - x^19)^19*(1 - x^24)^24*(1 - x^39)^39*...) = 1 + x + x^2 + 4*x^3 + 9*x^4 + 14*x^5 + 19*x^6 + 24*x^7 + 39*x^8 + ... %p A293807 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A293807 add(b(n-a(i)*j, i-1)*binomial(a(i)+j-1, j), j=0..n/a(i)))) %p A293807 end: %p A293807 a:= n-> `if`(n<2, 1, b(n, n-1)): %p A293807 seq(a(n), n=0..60); # _Alois P. Heinz_, Oct 16 2017 %t A293807 a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^a[k])^a[k], {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 45}] %o A293807 (Python) %o A293807 from sympy import binomial %o A293807 from sympy.core.cache import cacheit %o A293807 @cacheit %o A293807 def b(n, i): return 1 if n==0 else 0 if i<1 else sum(b(n - a(i)*j, i - 1) * binomial(a(i) + j - 1, j) for j in range(n//a(i) + 1)) %o A293807 def a(n): return 1 if n<2 else b(n, n - 1) %o A293807 print([a(n) for n in range(51)]) # _Indranil Ghosh_, Dec 13 2017, after Maple code %Y A293807 Cf. A000081, A000219, A151945, A293806. %K A293807 nonn %O A293807 0,4 %A A293807 _Ilya Gutkovskiy_, Oct 16 2017