This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293815 #19 Feb 15 2023 09:56:07 %S A293815 1,0,1,0,2,0,4,2,0,10,5,0,26,18,1,0,76,52,8,0,232,168,30,0,764,533, %T A293815 114,4,0,2620,1792,411,22,0,9496,6161,1462,116,0,35696,22088,5237,482, %U A293815 6,0,140152,81690,18998,1966,48,0,568504,313224,70220,7682,274 %N A293815 Number T(n,k) of sets of exactly k nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; triangle T(n,k), n>=0, read by rows. %C A293815 The smallest nonzero term in column k is A291057(k). %H A293815 Alois P. Heinz, <a href="/A293815/b293815.txt">Rows n = 0..300, flattened</a> %F A293815 G.f.: Product_{j>=1} (1+y*x^j)^A000085(j). %e A293815 T(0,0) = 1: {}. %e A293815 T(3,1) = 4: {aaa}, {aab}, {aba}, {abc}. %e A293815 T(3,2) = 2: {a,aa}, {a,ab}. %e A293815 T(4,2) = 5: {a,aaa}, {a,aab}, {a,aba}, {a,abc}, {aa,ab}. %e A293815 T(5,3) = 1: {a,aa,ab}. %e A293815 Triangle T(n,k) begins: %e A293815 1; %e A293815 0, 1; %e A293815 0, 2; %e A293815 0, 4, 2; %e A293815 0, 10, 5; %e A293815 0, 26, 18, 1; %e A293815 0, 76, 52, 8; %e A293815 0, 232, 168, 30; %e A293815 0, 764, 533, 114, 4; %e A293815 0, 2620, 1792, 411, 22; %e A293815 0, 9496, 6161, 1462, 116; %e A293815 0, 35696, 22088, 5237, 482, 6; %e A293815 0, 140152, 81690, 18998, 1966, 48; %e A293815 ... %p A293815 g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: %p A293815 b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, %p A293815 add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i)))) %p A293815 end: %p A293815 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): %p A293815 seq(T(n), n=0..15); %t A293815 g[n_] := g[n] = If[n < 2, 1, g[n - 1] + (n - 1)*g[n - 2]]; %t A293815 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1]* Binomial[g[i], j]*x^j, {j, 0, n/i}]]]]; %t A293815 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, n]]; %t A293815 Table[T[n], {n, 0, 15}] // Flatten (* _Jean-François Alcover_, Jun 04 2018, from Maple *) %Y A293815 Columns k=0-10 give: A000007, A000085 (for n>0), A293964, A293965, A293966, A293967, A293968, A293969, A293970, A293971, A293972. %Y A293815 Row sums give A293114. %Y A293815 Cf. A208741, A293808, A291057, A294129. %K A293815 nonn,tabf %O A293815 0,5 %A A293815 _Alois P. Heinz_, Oct 16 2017