This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293819 #40 Jun 14 2018 04:03:18 %S A293819 1,0,1,1,1,1,1,2,1,1,2,4,3,1,1,1,6,6,4,1,1,4,10,13,10,4,1,1,2,12,21, %T A293819 21,12,5,1,1,5,20,37,41,30,15,5,1,1,4,23,51,74,65,43,19,6,1,1,7,35,84, %U A293819 126,131,99,55,22,6,1,1,5,38,108,196,239,216,143,73,26,7,1,1,10,56,166,314,422,428 %N A293819 Triangle read by rows of the number of integer-sided k-gons having perimeter n, modulo rotations but not reflections, for k=3..n. %C A293819 Rotations are counted only once, but reflections are considered different. For a k-gon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides (equivalently, shorter than n/2). Column k=3 is A008742, column k=4 is A293821, column k=5 is A293822 and column k=6 is A293823. %C A293819 A formula is given in Section 6 of the East and Niles article. %H A293819 Andrew Howroyd, <a href="/A293819/b293819.txt">Rows n=3..52 of triangle, flattened</a> %H A293819 James East, Ron Niles, <a href="https://arxiv.org/abs/1710.11245">Integer polygons of given perimeter</a>, arXiv:1710.11245 [math.CO], 2017. %F A293819 T(n,k) = (Sum_{d|gcd(n,k)} phi(d)*binomial(n/d, k/d))/n - binomial(floor(n/2), k-1). - _Andrew Howroyd_, Nov 21 2017 %e A293819 For polygons having perimeter 7, there are: 2 triangles (331, 322), 4 quadrilaterals (3211, 3121, 3112, 2221), 3 pentagons (31111, 22111, 21211), 1 hexagon (211111) and 1 heptagon (1111111). Note that the quadrilaterals 3211 and 3112 are reflections of each other, but these are not rotationally equivalent. %e A293819 The triangle begins: %e A293819 n=3: 1; %e A293819 n=4: 0, 1; %e A293819 n=5: 1, 1, 1; %e A293819 n=6: 1, 2, 1, 1; %e A293819 n=7: 2, 4, 3, 1, 1; %e A293819 n=8: 1, 6, 6, 4, 1, 1; %e A293819 n=9: 4, 10, 13, 10, 4, 1, 1; %e A293819 ... %t A293819 T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#]&]/n - Binomial[Floor[n/2], k - 1]; %t A293819 Table[T[n, k], {n, 3, 16}, {k, 3, n}] // Flatten (* _Jean-François Alcover_, Jun 14 2018, translated from PARI *) %o A293819 (PARI) %o A293819 T(n,k)={sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d,k/d))/n - binomial(floor(n/2), k-1)} %o A293819 for(n=3, 10, for(k=3, n, print1(T(n, k), ", ")); print); \\ _Andrew Howroyd_, Nov 21 2017 %Y A293819 Columns: A008742 (triangles), A293821 (quadrilaterals), A293822 (pentagons), A293823 (hexagons). %Y A293819 Row sums are A293820. %Y A293819 Same triangle with reflection allowed is A124287. %K A293819 nonn,tabl %O A293819 3,8 %A A293819 _James East_, Oct 16 2017