A293973 Sierpinski carpet iterations: start with a(0) = 1; read a(n) as a 3^n X 3^n binary matrix, replace 1 with [111;101;111] and 0 with [000;000;000], concatenate the 3^(n+1) rows of the new matrix.
1, 111101111, 111111111101101101111111111111000111101000101111000111111111111101101101111111111
Offset: 0
Keywords
Examples
Consider a(0) = 1 as a 1 X 1 matrix, replace the 1 by the 3 X 3 matrix E = [1,1,1; 1,0,1; 1,1,1], then this matrix is the result. Concatenating all elements yields a(1) = concat(111,101,111) = 111101111. Now reconsider a(1) as the previously given 3 X 3 matrix E. Replace every 1 by that same matrix E. This yields the 9 X 9 matrix [ 1 1 1 1 1 1 1 1 1 ] [ 1 0 1 1 0 1 1 0 1 ] [ 1 1 1 1 1 1 1 1 1 ] [ 1 1 1 0 0 0 1 1 1 ] [ 1 0 1 0 0 0 1 0 1 ] [ 1 1 1 0 0 0 1 1 1 ] [ 1 1 1 1 1 1 1 1 1 ] [ 1 0 1 1 0 1 1 0 1 ] [ 1 1 1 1 1 1 1 1 1 ]. Concatenating all elements yields a(2) = 111111111101101101111111111111000111101000101111000111111111111101101101111111111.
Crossrefs
Programs
-
Mathematica
A293973[n_]:=FromDigits[Flatten[Nest[ArrayFlatten[{{#,#,#},{#,0,#},{#,#,#}}]&,{{1}},n]]];Array[A293973,4,0] (* Paolo Xausa, May 12 2023 *)
-
PARI
a(n,A=Mat(1),E=2^9-1-2^4)={for(k=1,n, A=matrix(3^k,3^k, i,j, A[(i+2)\3,(j+2)\3]&&bittest(E,(i-1)%3*3+(j-1)%3)));fromdigits(apply(t->fromdigits(t~,10),Vec(A)),10^3^n)}
Comments