cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293844 Number of chains in the partially ordered (by subspace inclusion) set of all subspaces of the vector space GF(2)^n.

This page as a plain text file.
%I A293844 #17 Aug 02 2018 15:14:51
%S A293844 1,3,15,143,2783,111231,9031551,1478288639,485839107071,
%T A293844 319967908160511,421866566365149183,1112976522259306192895,
%U A293844 5873986737617632960438271,62010172563368117470328995839,1309330918812255261194272293584895,55294146267102513780208470077042393087
%N A293844 Number of chains in the partially ordered (by subspace inclusion) set of all subspaces of the vector space GF(2)^n.
%H A293844 Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018.
%F A293844 a(n)/A005329(n) is the coefficient of x^n in eq(x)^2/(2 - eq(x)) where eq(x) is the q-exponential function.
%t A293844 nn = 16; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[ eq[z]^2/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z]
%Y A293844 Row sums of A293845.
%Y A293844 Cf. A005329, A289545.
%K A293844 nonn
%O A293844 0,2
%A A293844 _Geoffrey Critzer_, Oct 17 2017