This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293844 #17 Aug 02 2018 15:14:51 %S A293844 1,3,15,143,2783,111231,9031551,1478288639,485839107071, %T A293844 319967908160511,421866566365149183,1112976522259306192895, %U A293844 5873986737617632960438271,62010172563368117470328995839,1309330918812255261194272293584895,55294146267102513780208470077042393087 %N A293844 Number of chains in the partially ordered (by subspace inclusion) set of all subspaces of the vector space GF(2)^n. %H A293844 Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018. %F A293844 a(n)/A005329(n) is the coefficient of x^n in eq(x)^2/(2 - eq(x)) where eq(x) is the q-exponential function. %t A293844 nn = 16; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[ eq[z]^2/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z] %Y A293844 Row sums of A293845. %Y A293844 Cf. A005329, A289545. %K A293844 nonn %O A293844 0,2 %A A293844 _Geoffrey Critzer_, Oct 17 2017