This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293850 #7 Dec 12 2020 04:44:41 %S A293850 1,1,7,42,931,6078,560124,3451290,504673027,10212362573,1083069266634, %T A293850 17595339114554,13211434169884204,109469680507411214, %U A293850 36642712015230282784,3131089417758323092388,735014776353108421594259,19549131844625243949179686 %N A293850 Number of set partitions of [n^2] that are invariant under a permutation consisting of n n-cycles. %H A293850 Alois P. Heinz, <a href="/A293850/b293850.txt">Table of n, a(n) for n = 0..281</a> %F A293850 a(n) = A162663(n,n). %p A293850 b:= proc(n, k) option remember; `if`(n=0, 1, add(binomial(n-1, j-1) %p A293850 *add(d^(j-1), d=numtheory[divisors](k))*b(n-j, k), j=1..n)) %p A293850 end: %p A293850 a:= n-> b(n$2): %p A293850 seq(a(n), n=0..18); %t A293850 b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[Binomial[n - 1, j - 1] Sum[d^(j - 1), {d, Divisors[k]}] b[n - j, k], {j, 1, n}]]; %t A293850 a[n_] := b[n, n]; %t A293850 a /@ Range[0, 18] (* _Jean-François Alcover_, Dec 12 2020, after _Alois P. Heinz_ *) %Y A293850 Cf. A162663. %K A293850 nonn %O A293850 0,3 %A A293850 _Alois P. Heinz_, Oct 17 2017