cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293854 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - a(0)*x - a(0)*x^2/(1 - a(1)*x - a(1)*x^2/(1 - a(2)*x - a(2)*x^2/(1 - ... )))), a continued fraction.

This page as a plain text file.
%I A293854 #4 Oct 17 2017 22:17:56
%S A293854 1,1,2,4,9,22,59,177,611,2516,12920,86365,776624,9657931,169092427,
%T A293854 4225447537,154124945314,8322768187672,682155062207265,
%U A293854 87453058120694362,17875236303587679031,6127017505201742648325,3596451909621665099998347
%N A293854 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - a(0)*x - a(0)*x^2/(1 - a(1)*x - a(1)*x^2/(1 - a(2)*x - a(2)*x^2/(1 - ... )))), a continued fraction.
%e A293854 G.f. =  1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 22*x^5 + 59*x^6 + ... = 1/(1 - x - x^2/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 4*x - 4*x^2/(1 - 9*x - 9*x^2/(1 - 22*x - 22*x^2/(1 - 59*x - 59*x^2/(1 - ...)))))))).
%Y A293854 Cf. A213435, A291419.
%K A293854 nonn
%O A293854 0,3
%A A293854 _Ilya Gutkovskiy_, Oct 17 2017