cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293855 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - x^a(1) - x^a(2)/(1 - x^a(3) - x^a(4)/(1 - x^a(5) - x^a(6)/(1 - ... )))), a continued fraction.

This page as a plain text file.
%I A293855 #4 Oct 17 2017 22:18:04
%S A293855 1,1,2,3,5,9,15,27,47,82,145,253,445,781,1369,2405,4219,7405,12998,
%T A293855 22809,40035,70263,123316,216434,379854,666680,1170079,2053582,
%U A293855 3604217,6325695,11102130,19485175,34198108,60020567,105341129,184882533,324484395
%N A293855 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = 1/(1 - x^a(1) - x^a(2)/(1 - x^a(3) - x^a(4)/(1 - x^a(5) - x^a(6)/(1 - ... )))), a continued fraction.
%e A293855 G.f. =  1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 15*x^6 + 27*x^7 + 47*x^8 + 82*x^9 + 145*x^10 + ... = 1/(1 - x - x^2/(1 - x^3 - x^5/(1 - x^9 - x^15/(1 - x^27 - x^47/(1 - x^82 - x^145/(1 - ...)))))).
%Y A293855 Cf. A088352, A213411.
%K A293855 nonn
%O A293855 0,3
%A A293855 _Ilya Gutkovskiy_, Oct 17 2017