This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293865 #26 Oct 30 2017 22:59:41 %S A293865 0,0,0,1,1,2,3,5,8,13,21,37,56,90,144,239,374,592,948,1558,2431,3848, %T A293865 6127,9972,15602,24658,39158,63265,99110,156505,248040,398675,625024, %U A293865 986241,1560763,2498832,3919561,6180914,9770162,15594972,24470070,38567903,60907330 %N A293865 Number of self-intersecting walks of length n on a square lattice such that at each point the angle turns 90 degrees. %C A293865 It is assumed that the first walk turns left and that all walks end when they intersect themselves. %H A293865 MathStackExchange, <a href="https://math.stackexchange.com/questions/2471391/expected-number-of-steps-before-intersection">Expected Number of Steps Before Intersection</a>, Oct 2017. %F A293865 For n>2, a(n) = 2*A189722(n-1) - A189722(n). - _Jens Randrup Rasmussen_, Oct 29 2017 %e A293865 For n = 4 we have the simplest self-intersecting walk, which is a square. %e A293865 For n = 5 we have the walk: %e A293865 (0,0), (0,1), (-1,1), (-1, 2), (0,2), (0,1) %e A293865 For n = 6 we have the walks: %e A293865 (0,0), (0,1), (-1,1), (-1, 0), (-2,0), (-2,1), (-1,1) %e A293865 (0,0), (0,1), (-1,1), (-1, 2), (-2,2), (-2,1), (-1,1) %o A293865 (Visual Basic for Excel) %o A293865 Const N = 50 %o A293865 Const MaxSteps = 43 %o A293865 Dim BeenHere() As Boolean %o A293865 Dim LoopBacks(MaxSteps) As Long %o A293865 Dim PosX As Integer, PosY As Integer %o A293865 Sub Macro1() %o A293865 ReDim BeenHere(N, N) %o A293865 PosX = N / 2: PosY = N / 2 %o A293865 BeenHere(PosX, PosY) = True %o A293865 PosX = PosX + 1 %o A293865 BeenHere(PosX, PosY) = True %o A293865 PosY = PosY - 1 %o A293865 BeenHere(PosX, PosY) = True %o A293865 DoSteps 2, 3, PosX, PosY, BeenHere() %o A293865 For i = 4 To MaxSteps %o A293865 Cells(i - 1, 3).Value = i %o A293865 Cells(i - 1, 4).Value = LoopBacks(i) %o A293865 Next i %o A293865 End Sub %o A293865 Sub DoSteps(ByVal StepNo As Integer, Dir As Integer, X As Integer, Y As Integer, BH() As Boolean) %o A293865 Dim BH2() As Boolean %o A293865 Dim X1 As Integer, Y1 As Integer, X2 As Integer, Y2 As Integer %o A293865 Dim Dir1 As Integer, Dir2 As Integer %o A293865 BH2 = BH %o A293865 StepNo = StepNo + 1 %o A293865 Select Case Dir %o A293865 Case 1, 3 ' North or South %o A293865 Dir1 = 2: X1 = X + 1: Y1 = Y %o A293865 Dir2 = 4: X2 = X - 1: Y2 = Y %o A293865 Case 2, 4 ' East or West %o A293865 Dir1 = 1: Y1 = Y + 1: X1 = X %o A293865 Dir2 = 3: Y2 = Y - 1: X2 = X %o A293865 End Select %o A293865 If BH2(X1, Y1) Then %o A293865 LoopBacks(StepNo) = LoopBacks(StepNo) + 1 %o A293865 ElseIf StepNo < MaxSteps Then %o A293865 BH2(X1, Y1) = True %o A293865 DoSteps StepNo, Dir1, X1, Y1, BH2() %o A293865 BH2(X1, Y1) = False %o A293865 End If %o A293865 If BH2(X2, Y2) Then %o A293865 LoopBacks(StepNo) = LoopBacks(StepNo) + 1 %o A293865 ElseIf StepNo < MaxSteps Then %o A293865 BH2(X2, Y2) = True %o A293865 DoSteps StepNo, Dir2, X2, Y2, BH2() %o A293865 End If %o A293865 End Sub %Y A293865 This sequence gives the number of self-intersecting walks while A189722 gives the number of self-avoiding walks. %K A293865 nonn,walk %O A293865 1,6 %A A293865 _Jens Randrup Rasmussen_, Oct 18 2017 %E A293865 The terms starting from a(11) and the program corrected by _Jens Randrup Rasmussen_, Oct 29 2017