cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293869 Square array whose n-th row lists all numbers having n as a substring, n >= 1; read by falling antidiagonals.

Original entry on oeis.org

1, 10, 2, 11, 12, 3, 12, 20, 13, 4, 13, 21, 23, 14, 5, 14, 22, 30, 24, 15, 6, 15, 23, 31, 34, 25, 16, 7, 16, 24, 32, 40, 35, 26, 17, 8, 17, 25, 33, 41, 45, 36, 27, 18, 9, 18, 26, 34, 42, 50, 46, 37, 28, 19, 10, 19, 27, 35, 43, 51, 56, 47, 38, 29, 100, 11
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Examples

			The array starts:
   [ 1  10  11  12  13  14  15  16  17  18  19  21  31 ...] = A011531
   [ 2  12  20  21  22  23  24  25  26  27  28  29  32 ...] = A011532
   [ 3  13  23  30  31  32  33  34  35  36  37  38  39 ...] = A011533
   [ 4  14  24  34  40  41  42  43  44  45  46  47  48 ...] = A011534
   [ 5  15  25  35  45  50  51  52  53  54  55  56  57 ...] = A011535
   [ 6  16  26  36  46  56  60  61  62  63  64  65  66 ...] = A011536
   [ 7  17  27  37  47  57  67  70  71  72  73  74  75 ...] = A011537
   [ 8  18  28  38  48  58  68  78  80  81  82  83  84 ...] = A011538
   [ 9  19  29  39  49  59  69  79  89  90  91  92  93 ...] = A011539
   [10 100 101 102 103 104 105 106 107 108 109 110 210 ...] = A293870
   [11 110 111 112 113 114 115 116 117 118 119 211 311 ...] = A293871
   [12 112 120 121 122 123 124 125 126 127 128 129 212 ...] = A293872
   [   ...             ...             ...             ...]
		

Crossrefs

Cf. A072484, A292690 (variant starting with row 0).
Cf. A292451, A292731 (both partially coincide with row 11, but no inclusion relation holds).

Programs

  • Mathematica
    Block[{d = 15, q, a, s}, a = Table[q = n-1; s = IntegerString[n]; Table[While[StringFreeQ[IntegerString[++q], s]]; q, d-n+1], {n, d}]; Table[a[[n, k-n+1]], {k, d}, {n, k}]] (* Paolo Xausa, Mar 01 2024 *)
  • PARI
    has=(n,p,m=10^#Str(p))->until(p>n\=10,n%m==p&&return(1))
    Mat(vectorv(12,n,a=[];for(k=n,oo,has(k,n)||next;a=concat(a,k);#a>12&&break);a))
    
  • Perl
    See Links section.

Formula

T(n, k) = A072484(n, k) for any n > 0 and k = 1..n. - Rémy Sigrist, Jan 29 2021