This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293881 #20 Nov 05 2020 19:40:24 %S A293881 1,0,1,0,2,1,0,10,4,1,0,69,26,9,1,0,616,230,79,19,1,0,6740,2509,854, %T A293881 252,39,1,0,87291,32422,11105,3441,796,79,1,0,1305710,484180,167273, %U A293881 52938,14296,2468,159,1,0,22149226,8203519,2855096,919077,265103,59520,7564,319,1 %N A293881 Number T(n,k) of linear chord diagrams having n chords and minimal chord length k (or k=0 if n=0); triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A293881 Conjecture: column k>0 is asymptotic to (exp(-k+1) - exp(-k)) * 2^(n + 1/2) * n^n / exp(n). - _Vaclav Kotesovec_, Oct 25 2017 %e A293881 Triangle T(n,k) begins: %e A293881 1; %e A293881 0, 1; %e A293881 0, 2, 1; %e A293881 0, 10, 4, 1; %e A293881 0, 69, 26, 9, 1; %e A293881 0, 616, 230, 79, 19, 1; %e A293881 0, 6740, 2509, 854, 252, 39, 1; %e A293881 0, 87291, 32422, 11105, 3441, 796, 79, 1; %e A293881 0, 1305710, 484180, 167273, 52938, 14296, 2468, 159, 1; %e A293881 ... %Y A293881 Columns k=0-10 give: A000007, A293914, A293915, A293916, A293917, A293918, A293919, A293920, A293921, A293922, A293923. %Y A293881 Row sums give A001147. %Y A293881 T(2n,n) gives A290688. %Y A293881 Main diagonal and first lower diagonal give: A000012, A054135 (for n>0). %Y A293881 Cf. A293157, A293961. %K A293881 nonn,tabl %O A293881 0,5 %A A293881 _Alois P. Heinz_, Oct 18 2017