This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293927 #25 Oct 23 2017 01:14:29 %S A293927 17,28,30,33,36,43,45,47,51,52,56,58,65,66,72,74,76,80,84,90,94,107, %T A293927 111,119,126,129,130,133,137,143,145,155,156,166,169,174,179,185,192, %U A293927 200,202,204,208,213,214,216,219,228,238,246,248,249,250,254,258,262 %N A293927 Numbers n such that prime(k) XOR prime(k+1) XOR ... XOR prime(n) = 0 for some k < n (where XOR denotes the binary XOR operator, and prime(n) = A000040(n)). %C A293927 Equivalently, numbers n such that A126084(n) = A126084(m) for some m < n. %C A293927 See A293983(n) for the least k such that prime(k) XOR prime(k+1) XOR ... XOR prime(a(n)) = 0. %H A293927 Robert Israel, <a href="/A293927/b293927.txt">Table of n, a(n) for n = 1..10000</a> %e A293927 prime(33) XOR prime(34) XOR prime(35) XOR prime(36) = 137 XOR 139 XOR 149 XOR 151 = 0, hence 36 appears in the sequence. %p A293927 N:= 1000: # to get all terms <= N %p A293927 R[0]:= 0: T:= 2: p:= 2; %p A293927 Res:= NULL: %p A293927 for n from 2 to N do %p A293927 p:= nextprime(p); %p A293927 T:= Bits:-Xor(T,p); %p A293927 if assigned(R[T]) then Res:= Res, n %p A293927 else R[T]:= n %p A293927 fi %p A293927 od: %p A293927 Res; # _Robert Israel_, Oct 22 2017 %o A293927 (PARI) s = 0; seen = 2^0; for (i = 1, 262, s = bitxor(s, prime(i)); if (bittest(seen, s), print1 (i ", "), seen += 2^s)) %Y A293927 Cf. A000040, A126084, A293983. %K A293927 nonn,base %O A293927 1,1 %A A293927 _Rémy Sigrist_, Oct 21 2017