This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293944 #11 Apr 07 2020 08:47:52 %S A293944 1,1,1,2,3,2,5,9,9,5,14,28,34,28,14,42,90,123,123,90,42,132,297,440, %T A293944 497,440,297,132,429,1001,1573,1935,1935,1573,1001,429,1430,3432,5642, %U A293944 7397,8068,7397,5642,3432,1430,4862,11934,20332,28014,32636,32636,28014,20332,11934 %N A293944 Triangle read by rows related to Catalan triangle A009766. %H A293944 Laurent Méhats, Lutz Straßburger, <a href="https://doi.org/10.1007/978-3-662-53826-5_13">Non-crossing Tree Realizations of Ordered Degree Sequences</a>, Pages 211-227 in Logical Aspects of Computational Linguistics. Celebrating 20 Years of LACL (1996-2016), 9th International Conference, LACL 2016, Nancy, France, December 5-7, 2016, Proceedings, Lecture Notes in Computer Science book series (LNCS, volume 10054). See Eq. (7). %e A293944 Triangle begins: %e A293944 1, %e A293944 1,1, %e A293944 2,3,2, %e A293944 5,9,9,5, %e A293944 14,28,34,28,14, %e A293944 42,90,123,123,90,42, %e A293944 132,297,440,497,440,297,132, %e A293944 ... %p A293944 A000108 := proc(q) %p A293944 if q <0 then %p A293944 0; %p A293944 else %p A293944 binomial(2*q,q)/(1+q) ; %p A293944 end if; %p A293944 end proc: %p A293944 R := proc(q,s) %p A293944 option remember; %p A293944 local a,j,l ; %p A293944 if q= 0 then %p A293944 A000108(s) ; %p A293944 elif s = 0 then %p A293944 A000108(q) ; %p A293944 else %p A293944 a := 0 ; %p A293944 for j from 0 to q do %p A293944 for l from 0 to s do %p A293944 if j+l-1 >= 0 then %p A293944 a := a+A000108(j+l-1) *procname(q-j,s-l) ; %p A293944 end if; %p A293944 end do: %p A293944 end do: %p A293944 end if; %p A293944 end proc: %p A293944 A293944 := proc(n,k) %p A293944 R(n-k,k) ; %p A293944 end proc: %p A293944 seq(seq(A293944(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Nov 02 2017 %t A293944 R[q_, s_] := R[q, s] = Module[{a, j, l}, If[q == 0, CatalanNumber[s], If[s == 0, CatalanNumber[q], a = 0; For[j = 0, j <= q, j++, For[l = 0, l <= s , l++, If[j + l - 1 >= 0, a = a + CatalanNumber[j + l - 1] R[q - j, s - l]] ]]]] /. Null -> a]; %t A293944 T [n_, k_] := R[n - k, k]; %t A293944 Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 07 2020, after _R. J. Mathar_ *) %Y A293944 Cf. A009766, A000108 (1st column), A000245 (2nd column), A120989 (3rd), A090317 (row sums). %K A293944 nonn,tabl %O A293944 0,4 %A A293944 _N. J. A. Sloane_, Oct 21 2017 %E A293944 More terms from _R. J. Mathar_, Nov 02 2017