cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A125256 Smallest odd prime divisor of n^2 + 1.

Original entry on oeis.org

5, 5, 17, 13, 37, 5, 5, 41, 101, 61, 5, 5, 197, 113, 257, 5, 5, 181, 401, 13, 5, 5, 577, 313, 677, 5, 5, 421, 17, 13, 5, 5, 13, 613, 1297, 5, 5, 761, 1601, 29, 5, 5, 13, 1013, 29, 5, 5, 1201, 41, 1301, 5, 5, 2917, 17, 3137, 5, 5, 1741, 13, 1861, 5, 5, 17, 2113, 4357, 5, 5
Offset: 2

Views

Author

Nick Hobson, Nov 26 2006

Keywords

Comments

Any odd prime divisor of n^2+1 is congruent to 1 modulo 4.
n^2+1 is never a power of 2 for n > 1; hence a prime divisor congruent to 1 modulo 4 always exists.
a(n) = 5 if and only if n is congruent to 2 or -2 modulo 5.
If the map "x -> smallest odd prime divisor of n^2+1" is iterated, does it always terminate in the 2-cycle (5 <-> 13)? - Zoran Sunic, Oct 25 2017

Examples

			The prime divisors of 8^2 + 1 = 65 are 5 and 13, so a(7) = 5.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.

Crossrefs

Programs

  • Maple
    with(numtheory, factorset);
    A125256 := proc(n) local t1,t2;
    if n <= 1 then return(-1); fi;
    if (n mod 5) = 2 or (n mod 5) = 3 then return(5); fi;
    t1 := numtheory[factorset](n^2+1);
    t2:=sort(convert(t1,list));
    if (n mod 2) = 1 then return(t2[2]); fi;
    t2[1];
    end;
    [seq(A125256(n),n=1..40)]; # N. J. A. Sloane, Nov 04 2017
  • Mathematica
    Table[Select[First/@FactorInteger[n^2+1],OddQ][[1]],{n,2,68}] (* James C. McMahon, Dec 16 2024 *)
  • PARI
    vector(68, n, if(n<2, "-", factor(n^2+1)[1+(n%2),1]))
    
  • PARI
    A125256(n)=factor(n^2+1)[1+bittest(n,0),1] \\ M. F. Hasler, Nov 06 2017
Showing 1-1 of 1 results.