This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293971 #6 Oct 20 2017 18:54:19 %S A293971 45,740,7265,54844,355786,2086218,11402599,59244154,296592681, %T A293971 1444795518,6898985716,32478508414,151439118998,702039301562, %U A293971 3246061184641,15011635714770,69604533115983,324297338323040,1521325113273431,7199243859471728,34426802099939524 %N A293971 Number of sets of exactly nine nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter. %H A293971 Alois P. Heinz, <a href="/A293971/b293971.txt">Table of n, a(n) for n = 25..820</a> %F A293971 a(n) = [x^n y^9] Product_{j>=1} (1+y*x^j)^A000085(j). %p A293971 g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: %p A293971 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, %p A293971 add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i))), x, 10) %p A293971 end: %p A293971 a:= n-> coeff(b(n$2), x, 9): %p A293971 seq(a(n), n=25..49); %Y A293971 Column k=9 of A293815. %Y A293971 Cf. A000085. %K A293971 nonn %O A293971 25,1 %A A293971 _Alois P. Heinz_, Oct 20 2017