This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293985 #37 Jan 27 2025 11:39:10 %S A293985 1,1,1,1,2,3,1,3,7,13,1,4,13,34,73,1,5,21,73,209,501,1,6,31,136,501, %T A293985 1546,4051,1,7,43,229,1045,4051,13327,37633,1,8,57,358,1961,9276, %U A293985 37633,130922,394353,1,9,73,529,3393,19081,93289,394353,1441729,4596553 %N A293985 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-x))/(1-x)^k. %H A293985 Seiichi Manyama, <a href="/A293985/b293985.txt">Antidiagonals n = 0..139, flattened</a> %H A293985 Wikipedia, <a href="https://en.wikipedia.org/wiki/Laguerre_polynomials">Laguerre polynomials</a> %H A293985 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a> %F A293985 A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} (j+k)*A(n-j,k)/(n-j)! for n > 0. %F A293985 A(0,k) = 1, A(1,k) = k+1 and A(n,k) = (2*n-1+k)*A(n-1,k) - (n-1)*(n-2+k)*A(n-2,k) for n > 1. %F A293985 From _Seiichi Manyama_, Jan 25 2025: (Start) %F A293985 A(n,k) = n! * Sum_{j=0..n} binomial(n+k-1,j)/(n-j)!. %F A293985 A(n,k) = n! * LaguerreL(n, k-1, -1). (End) %e A293985 Square array begins: %e A293985 1, 1, 1, 1, 1, ... A000012; %e A293985 1, 2, 3, 4, 5, ... A000027; %e A293985 3, 7, 13, 21, 31, ... A002061; %e A293985 13, 34, 73, 136, 229, ... A135859; %e A293985 73, 209, 501, 1045, 1961, ... %e A293985 501, 1546, 4051, 9276, 19081, ... %e A293985 Antidiagonal rows begin as: %e A293985 1; %e A293985 1, 1; %e A293985 1, 2, 3; %e A293985 1, 3, 7, 13; %e A293985 1, 4, 13, 34, 73; %e A293985 1, 5, 21, 73, 209, 501; - _G. C. Greubel_, Mar 09 2021 %t A293985 t[n_, k_]:= t[n, k]= If[n==0, 1, (n-1)!*Sum[(j+k)*t[n-j,k]/(n-j)!, {j,n}]]; %t A293985 T[n_,k_]:= t[k,n-k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 09 2021 *) %o A293985 (Sage) %o A293985 @CachedFunction %o A293985 def t(n,k): return 1 if n==0 else factorial(n-1)*sum( (j+k)*t(n-j,k)/factorial(n-j) for j in (1..n) ) %o A293985 def T(n,k): return t(k,n-k) %o A293985 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 09 2021 %o A293985 (Magma) %o A293985 function t(n,k) %o A293985 if n eq 0 then return 1; %o A293985 else return Factorial(n-1)*(&+[(j+k)*t(n-j,k)/Factorial(n-j): j in [1..n]]); %o A293985 end if; return t; %o A293985 end function; %o A293985 [t(k,n-k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 09 2021 %Y A293985 Columns k=0..6 give: A000262, A002720, A000262(n+1), A052852(n+1), A062147, A062266, A062192. %Y A293985 Main diagonal gives A152059. %Y A293985 Similar table: A086885, A088699, A176120. %K A293985 nonn,tabl %O A293985 0,5 %A A293985 _Seiichi Manyama_, Oct 21 2017