This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294006 #4 Oct 21 2017 21:10:24 %S A294006 1,2,7,22,73,234,791,2702,9507,34258,126807,482306,1885031,7578028, %T A294006 31316391,133117500,581531653,2611112712,12037781812,56962049532, %U A294006 276345797775,1373655295948,6988160240848,36356528106984,193225799686632,1048279646446240 %N A294006 Number of multisets of exactly four nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter. %H A294006 Alois P. Heinz, <a href="/A294006/b294006.txt">Table of n, a(n) for n = 4..803</a> %F A294006 a(n) = [x^n y^4] Product_{j>=1} 1/(1-y*x^j)^A000085(j). %p A294006 g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: %p A294006 b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, %p A294006 add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 5) %p A294006 end: %p A294006 a:= n-> coeff(b(n$2), x, 4): %p A294006 seq(a(n), n=4..35); %Y A294006 Column k=4 of A293808. %Y A294006 Cf. A000085. %K A294006 nonn %O A294006 4,2 %A A294006 _Alois P. Heinz_, Oct 21 2017