This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294016 #43 Jul 19 2024 14:37:23 %S A294016 1,4,7,14,17,30,33,48,57,74,77,110,113,134,153,184,187,230,233,278, %T A294016 301,330,333,406,419,452,479,536,539,624,627,690,721,762,789,900,903, %U A294016 948,983,1084,1087,1196,1199,1280,1347,1400,1403,1556,1573,1660,1703,1796,1799,1932,1967,2096,2143,2208,2211,2428,2431,2500 %N A294016 a(n) = sum of all divisors of all positive integers <= n, minus the sum of remainders of n mod k, for k = 1, 2, 3, ..., n. %C A294016 a(n) is also the area (also the number of cells) of the n-th polygon formed by the Dyck path described in A237593 and its mirror, as shown below in the example. %C A294016 a(n) is also the volume (and the number of cubes) in the n-th level (starting from the top) of the pyramid described in A294017. %F A294016 a(n) = A024916(n) - A004125(n). %F A294016 a(n) = A000290(n) - A067436(n). %F A294016 From _Omar E. Pol_, Nov 05 2017: (Start) %F A294016 a(n) = A000203(n) + A024816(n) + A153485(n) - A004125(n). %F A294016 a(n) = A000217(n) + A153485(n) - A004125(n). %F A294016 a(n) = A000203(n) + A153485(n) + A244048(n). (End) %F A294016 a(n) = (Pi^2/6 - 1) * n^2 + O(n*log(n)). - _Amiram Eldar_, Mar 30 2024 %e A294016 Illustration of initial terms: %e A294016 . %e A294016 . _ 1 %e A294016 . |_|_ _ 4 %e A294016 . | | %e A294016 . |_ _|_ _ 7 %e A294016 . | |_ %e A294016 . |_ | %e A294016 . |_ _|_ _ _ 14 %e A294016 . | |_ %e A294016 . | | %e A294016 . |_ | %e A294016 . |_ _ _|_ _ _ %e A294016 . | | 17 %e A294016 . | |_ _ %e A294016 . |_ _ | %e A294016 . | | %e A294016 . |_ _ _|_ _ _ _ %e A294016 . | |_ 30 %e A294016 . | |_ %e A294016 . | | %e A294016 . |_ | %e A294016 . |_ | %e A294016 . |_ _ _ _|_ _ _ _ %e A294016 . | | %e A294016 . | |_ 33 %e A294016 . | |_ _ %e A294016 . |_ _ | %e A294016 . |_ | %e A294016 . | | %e A294016 . |_ _ _ _| %e A294016 . %p A294016 A294016 := proc(n) %p A294016 A024916(n)-A004125(n) ; %p A294016 end proc: %p A294016 seq(A294016(n),n=1..80) ; # _R. J. Mathar_, Nov 07 2017 %t A294016 Accumulate[Table[2*(DivisorSigma[1, n] - n) + 1, {n, 1, 100}]] (* _Amiram Eldar_, Mar 30 2024 *) %o A294016 (Python) %o A294016 from math import isqrt %o A294016 def A294016(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))-n**2 # _Chai Wah Wu_, Oct 22 2023 %Y A294016 Partial sums of A294015. %Y A294016 Partial sums gives A294017. %Y A294016 Cf. A000203, A000217, A000290, A013661, A004125, A024816, A024916, A067436, A153485, A196020, A235791, A236104, A237591, A237593, A244048, A245092. %K A294016 nonn %O A294016 1,2 %A A294016 _Omar E. Pol_, Oct 22 2017