cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294018 Number of strict trees whose leaves are the parts of the integer partition with Heinz number n.

This page as a plain text file.
%I A294018 #8 Feb 23 2018 09:58:06
%S A294018 0,1,1,0,1,1,1,0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,0,1,1,3,1,0,1,1,
%T A294018 1,3,1,1,1,1,1,4,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,7,1,1,1,0,1,4,1,1,
%U A294018 1,3,1,6,1,1,1,1,1,4,1,1,0,1,1,8,1,1,1,1,1,7,1,1,1,1,1,1,1,1,1,3,1,4,1,1,4,1,1,6,1,4,1,1,1,4,1,1,1,1,1,13
%N A294018 Number of strict trees whose leaves are the parts of the integer partition with Heinz number n.
%C A294018 By convention a(1) = 0.
%C A294018 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%F A294018 A273873(n) = Sum_{i=1..A000041(n)} a(A215366(n,i)).
%e A294018 The a(84) = 8 strict trees: (((42)1)1), (((41)2)1), ((4(21))1), ((421)1), (((41)1)2), ((41)(21)), ((41)21), (4(21)1).
%t A294018 nn=120;
%t A294018 ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
%t A294018 tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
%t A294018 qci[y_]:=qci[y]=If[Length[y]===1,1,Sum[Times@@qci/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,UnsameQ@@Total/@#]&]}]];
%t A294018 qci/@ptns
%Y A294018 Cf. A000009, A000041, A000720, A001222, A056239, A063834, A196545, A215366, A273873, A281145, A289501, A296150, A299201, A299202, A299203.
%K A294018 nonn
%O A294018 1,30
%A A294018 _Gus Wiseman_, Feb 06 2018