A294020 Total number of elements after n-th stage of a hybrid cellular automaton formed by D-toothpicks and toothpicks (see Comments lines for precise definition).
0, 1, 5, 9, 15, 23, 27, 41, 65, 81, 103, 111, 115, 129, 153, 169, 191, 199, 203, 217, 241, 257, 279, 287, 291, 305, 329, 345, 367, 375, 379, 393, 417, 433, 455, 463, 467, 481, 505, 521, 543, 551, 555, 569, 593, 609, 631, 639, 643, 657, 681, 697, 719, 727, 731, 745, 769, 785, 807, 815, 819, 833, 857, 873, 895, 903
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Programs
-
PARI
concat(0, Vec(x*(1 + 4*x + 4*x^2 + 6*x^3 + 8*x^4 + 4*x^5 + 13*x^6 + 20*x^7 + 12*x^8 + 16*x^9) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Nov 12 2017
Formula
From Colin Barker, Nov 11 2017: (Start)
G.f.: x*(1 + 4*x + 4*x^2 + 6*x^3 + 8*x^4 + 4*x^5 + 13*x^6 + 20*x^7 + 12*x^8 + 16*x^9) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-6) - a(n-7) for n>10.
(End)
Comments