This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294027 #21 Aug 23 2018 02:13:13 %S A294027 945,8505,15015,19305,21735,33345,34125,21961263753,39891817245 %N A294027 Odd bi-unitary abundant numbers with a record small gap to the next term odd bi-unitary abundant number. %C A294027 The corresponding gaps are 7560, 1890, 1050, 330, 210, 150, 30, 12, 6. %C A294027 The upper ends are 8505, 10395, 16065, 19635, 21945, 33495, 34155, 21961263765, 39891817251. %C A294027 The bi-unitary version of A294025. %e A294027 Odd bi-unitary abundant numbers are 945, 8505, 10395, 12285, 15015, 16065, 17955, 19305, 19635, 21735, 21945, ... %e A294027 Their differences are 7560, 1890, 1890, 2730, 1050, 1890, 1350, 330, 2100, 210, ... %e A294027 The records of small differences are 7560, 1890, 1050, 330, 210, ... %e A294027 And the corresponding terms are 945, 8505, 15015, 19305, 21735, ... %t A294027 f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bOddAbundantQ[n_] := OddQ[n] && bsigma[n] > 2 n; s = Select[Range[1000000], bOddAbundantQ]; a = {}; dmin = 50000; Do[d = s[[j + 1]] - s[[j]]; If[d < dmin, AppendTo[a, s[[j]]]; dmin = d], {j, 1, Length[s] - 1}]; a %o A294027 (PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } %o A294027 gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m))); %o A294027 biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n)); %o A294027 biusig(n) = vecsum(biudivs(n)); %o A294027 isok(n) = (n % 2) && (biusig(n) > 2*n); %o A294027 lista(nn) = {last = 0; gap = oo; forstep(n=1, nn, 2, if (isok(n), if (last, if (n - last < gap, print1(last, ", "); gap = n - last)); last = n;););} \\ _Michel Marcus_, Dec 15 2017 %Y A294027 Cf. A293186, A294025. %K A294027 nonn,fini,more %O A294027 1,1 %A A294027 _Amiram Eldar_, Oct 22 2017 %E A294027 a(1) added by _Amiram Eldar_, Aug 22 2018. %E A294027 a(8)-a(9) from _Giovanni Resta_, Aug 22 2018