A294033 Triangle read by rows, expansion of exp(x*z)*z*(tanh(z) + sech(z)), T(n, k) for n >= 1 and 0 <= k <= n-1.
1, 2, 2, -3, 6, 3, -8, -12, 12, 4, 25, -40, -30, 20, 5, 96, 150, -120, -60, 30, 6, -427, 672, 525, -280, -105, 42, 7, -2176, -3416, 2688, 1400, -560, -168, 56, 8, 12465, -19584, -15372, 8064, 3150, -1008, -252, 72, 9, 79360, 124650, -97920, -51240, 20160, 6300, -1680, -360, 90, 10, -555731, 872960, 685575, -359040, -140910, 44352, 11550, -2640, -495, 110, 11
Offset: 1
Examples
Triangle starts: [1][ 1] [2][ 2, 2] [3][ -3, 6, 3] [4][ -8, -12, 12, 4] [5][ 25, -40, -30, 20, 5] [6][ 96, 150, -120, -60, 30, 6] [7][-427, 672, 525, -280, -105, 42, 7]
Crossrefs
Programs
-
Maple
gf := exp(x*z)*z*(tanh(z)+sech(z)): s := n -> n!*coeff(series(gf,z,n+2),z,n): C := n -> PolynomialTools:-CoefficientList(s(n),x): ListTools:-FlattenOnce([seq(C(n), n=1..7)]); # Alternatively: T := (n, k) -> `if`(n = k+1, n, (k+1)*binomial(n,k+1)*2^(n-k-1)*(euler(n-k-1, 1/2)+euler(n-k-1, 1))): for n from 1 to 7 do seq(T(n,k), k=0..n-1) od;
-
Mathematica
L[0] := 1; L[n_] := (-1)^Binomial[n, 2] 2 Abs[PolyLog[-n, -I]]; p[n_] := n Sum[Binomial[n - 1, k - 1] L[k - 1] x^(n - k), {k, 0, n}]; Table[CoefficientList[p[n], x], {n, 1, 11}] // Flatten
Formula
T(n, k) = (k+1)*binomial(n,k+1)*2^(n-k-1)*(Euler(n-k-1, 1/2) + Euler(n-k-1, 1)) for 0 <= k <= n-2.
T(n, k) is the coefficient of x^k of the polynomial p(n) = n*Sum_{k=1..n} binomial(n-1, k-1)*L(k-1)*x^(n-k) and L(n) = (-1)^binomial(n,2)*A000111(n). In particular n divides T(n, k).