This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294034 #6 Oct 31 2017 14:33:33 %S A294034 1,2,2,3,6,3,-4,12,12,4,-15,-20,30,20,5,-54,-90,-60,60,30,6,133,-378, %T A294034 -315,-140,105,42,7,792,1064,-1512,-840,-280,168,56,8,4293,7128,4788, %U A294034 -4536,-1890,-504,252,72,9,-15130,42930,35640,15960,-11340,-3780,-840,360,90,10,-123849,-166430,236115,130680,43890,-24948,-6930,-1320,495,110,11 %N A294034 Triangle read by rows, expansion of exp(x*z)*z*((exp(z) + 1)/((exp(z) + 2*exp(-z/2)*cos(z*sqrt(3)/2))/3) -1), for n >= 1 and 0 <= k <= n-1. %e A294034 Triangle starts: %e A294034 [1][ 1] %e A294034 [2][ 2, 2] %e A294034 [3][ 3, 6, 3] %e A294034 [4][ -4, 12, 12, 4] %e A294034 [5][ -15, -20, 30, 20, 5] %e A294034 [6][ -54, -90, -60, 60, 30, 6] %e A294034 [7][ 133, -378, -315, -140, 105, 42, 7] %e A294034 [8][ 792, 1064, -1512, -840, -280, 168, 56, 8] %p A294034 gf := exp(x*z)*z*((exp(z) + 1)/((exp(z) + 2*exp(-z/2)*cos(z*sqrt(3)/2))/3) - 1): %p A294034 s := n -> n!*coeff(series(gf, z, 12), z, n): %p A294034 C := n -> PolynomialTools:-CoefficientList(s(n), x): %p A294034 ListTools:-FlattenOnce([seq(C(n), n=1..11)]); %Y A294034 Cf. A003506, A294033. %K A294034 sign,tabl %O A294034 1,2 %A A294034 _Peter Luschny_, Oct 24 2017