This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294037 #12 Aug 06 2018 05:34:45 %S A294037 1,4,16,64,232,544,-1664,-37376,-362024,-2743712,-17780864,-98955776, %T A294037 -442825664,-1129423616,5536033792,118591811584,1224814969816, %U A294037 9905491019104,68032143081856,398051159254528,1854461906222272,4784426026102528 %N A294037 a(n) = 4^n*hypergeom([-n/4, (1-n)/4, (2-n)/4, (3-n)/4], [1, 1, 1], -1). %C A294037 Diagonal of rational function 1/(1 - (x^4 + y^4 + z^4 - t^4 + 4*x*y*z*t)). - _Gheorghe Coserea_, Aug 04 2018 %F A294037 Let H(m, n, x) = m^n*hypergeom([(k-n)/m for k=0..m-1], [1 for k=0..m-2], x) then a(n) = H(4, n, -1). %p A294037 T := (m,n,x) -> m^n*hypergeom([seq((k-n)/m, k=0..m-1)], [seq(1, k=0..m-2)], x): %p A294037 lprint(seq(simplify(T(4,n,-1)), n=0..39)); %t A294037 Table[4^n * HypergeometricPFQ[{-n/4, (1-n)/4, (2-n)/4, (3-n)/4}, {1, 1, 1}, -1], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 02 2017 *) %Y A294037 H(1, n, 1) = A000007(n), H(2, n, 1) = A000984(n), H(3, n, 1) = A006077(n), H(4, n, 1) = A294036(n), H(1, n, -1) = A000079(n), H(2, n, -1) = A098335(n), H(3, n, -1) = A294035(n), H(4, n, -1) = this seq.. %K A294037 sign %O A294037 0,2 %A A294037 _Peter Luschny_, Nov 02 2017