A294064 Numbers k such that 2*k - 3, 2*k + 3, 3*k - 2, 3*k + 2 are primes.
5, 7, 13, 35, 43, 55, 77, 127, 133, 155, 167, 253, 287, 295, 365, 475, 497, 533, 595, 713, 1007, 1177, 1483, 1805, 2323, 2575, 2723, 2927, 3107, 3415, 3487, 3823, 4145, 4213, 4367, 4565, 4717, 4927, 4963, 5125, 5215, 5363, 5417, 5587, 5627, 5795, 6133, 6587, 6797
Offset: 1
Keywords
Examples
5 is in the sequence because 2*5-3 = 7, 2*5+3 = 13, 3*5-2 = 13, 3*5+2 = 17 and the tetrad [7, 13, 13, 17] are all prime numbers. 7 is in the sequence because 2*7-3 = 11, 2*7+3 = 17, 3*7-2 = 19, 3*7+2 = 23 and the tetrad [11, 17, 19, 23] are all prime numbers.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[10^4], Function[k, AllTrue[Flatten@ Map[#1 k + {-1, 1} #2 & @@ # &, {#, Reverse@ #}] &@ {2, 3}, PrimeQ]]] (* Michael De Vlieger, Oct 22 2017 *)
-
PARI
{ for(n=1,10000, if(isprime(2*n-3)&&isprime(2*n+3)&&isprime(3*n-2)&&isprime(3*n+2), print1(n", ") ) ) }
Comments