cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294068 Number of factorizations of n using perfect powers (elements of A001597) other than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2018

Keywords

Examples

			The a(1152) = 7 factorizations are (4*4*8*9), (4*8*36), (4*9*32), (8*9*16), (8*144), (9*128), (32*36).
		

Crossrefs

Programs

  • Maple
    ispp:= proc(n) local F;
      F:= ifactors(n)[2];
      igcd(op(map(t -> t[2],F)))>1
    end proc:
    f:= proc(n) local F, np, Q;
      F:= map(t -> t[2], ifactors(n)[2]);
      np:= mul(ithprime(i)^F[i],i=1..nops(F));
      Q:= select(ispp, numtheory:-divisors(np));
      G(Q,np)
    end proc:
    G:= proc(Q,n) option remember; local q,t,k;
        if not numtheory:-factorset(n) subset `union`(seq(numtheory:-factorset(q),q=Q)) then return 0 fi;
        q:= Q[1]; t:= 0;
        for k from 0 while n mod q^k = 0 do
          t:= t + procname(Q[2..-1],n/q^k)
        od;
        t
    end proc:
    G({},1):= 1:
    map(f, [$1..200]); # Robert Israel, May 06 2018
  • Mathematica
    ppQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]>1];
    facsp[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsp[n/d],Min@@#>=d&]],{d,Select[Divisors[n],ppQ]}]];
    Table[Length[facsp[n]],{n,100}]