A294068 Number of factorizations of n using perfect powers (elements of A001597) other than 1.
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1
Keywords
Examples
The a(1152) = 7 factorizations are (4*4*8*9), (4*8*36), (4*9*32), (8*9*16), (8*144), (9*128), (32*36).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
ispp:= proc(n) local F; F:= ifactors(n)[2]; igcd(op(map(t -> t[2],F)))>1 end proc: f:= proc(n) local F, np, Q; F:= map(t -> t[2], ifactors(n)[2]); np:= mul(ithprime(i)^F[i],i=1..nops(F)); Q:= select(ispp, numtheory:-divisors(np)); G(Q,np) end proc: G:= proc(Q,n) option remember; local q,t,k; if not numtheory:-factorset(n) subset `union`(seq(numtheory:-factorset(q),q=Q)) then return 0 fi; q:= Q[1]; t:= 0; for k from 0 while n mod q^k = 0 do t:= t + procname(Q[2..-1],n/q^k) od; t end proc: G({},1):= 1: map(f, [$1..200]); # Robert Israel, May 06 2018
-
Mathematica
ppQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]>1]; facsp[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsp[n/d],Min@@#>=d&]],{d,Select[Divisors[n],ppQ]}]]; Table[Length[facsp[n]],{n,100}]