A294078 a(n) is the smallest even number k such that k*prime(n) - 1 or k*prime(n) + 1 is prime.
2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 6, 2, 6, 6, 4, 4, 4, 2, 2, 2, 2, 6, 6, 6, 6, 2, 4, 2, 4, 2, 8, 6, 2, 4, 10, 2, 2, 6, 2, 4, 4, 2, 2, 8, 4, 2, 2, 2, 6, 2, 6, 4, 6, 2, 4, 2, 6, 2, 2, 6, 6, 6, 2, 2, 6, 8, 10, 2, 2, 4, 2, 4, 6, 6, 8, 4
Offset: 1
Keywords
Examples
For n = 6, prime(6) = 13. The smallest even number k such that k * 13 + 1 is a prime number is k = 4, because 4 * 13 + 1 = 53 (not k = 2). So 4 is the sixth term.
Programs
-
Mathematica
f[n_] := Block[{k = 2, p = Prime@ n}, While[ !PrimeQ[k*p -1] && !PrimeQ[k*p +1], k += 2]; k]; Array[f, 100] (* Robert G. Wilson v, Feb 08 2018 *)
-
PARI
{ forprime(p=2,100, k=2; while(!isprime(k*p-1)&&!isprime(k*p+1),k+=2); print1(k", "); ) }
Comments