cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294079 Strict Moebius function of the multiorder of integer partitions indexed by Heinz numbers.

This page as a plain text file.
%I A294079 #10 Feb 23 2018 11:08:30
%S A294079 0,1,1,0,1,-1,1,0,0,-1,1,1,1,-1,-1,0,1,1,1,1,-1,-1,1,-1,0,-1,0,1,1,1,
%T A294079 1,0,-1,-1,-1,-1,1,-1,-1,-1,1,2,1,1,1,-1,1,1,0,1,-1,1,1,-1,-1,-1,-1,
%U A294079 -1,1,-3,1,-1,1,0,-1,2,1,1,-1,1,1,2,1,-1,1,1,-1,2,1,1,0,-1,1,-2,-1,-1,-1,-1,1,-3,-1
%N A294079 Strict Moebius function of the multiorder of integer partitions indexed by Heinz numbers.
%C A294079 By convention a(1) = 0.
%C A294079 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%F A294079 mu(y) = Sum_{g(t)=y} (-1)^d(t), where the sum is over all strict trees (A273873) whose multiset of leaves is the integer partition y, and d(t) is the number of non-leaf nodes in t.
%t A294079 nn=120;
%t A294079 ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
%t A294079 tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
%t A294079 qmu[y_]:=qmu[y]=If[Length[y]===1,1,-Sum[Times@@qmu/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,UnsameQ@@#]&]}]];
%t A294079 qmu/@ptns
%Y A294079 Cf. A000041, A000720, A056239, A063834, A196545, A273873, A289501, A294018, A294019, A296150, A299201, A299202, A299203.
%K A294079 sign
%O A294079 1,42
%A A294079 _Gus Wiseman_, Feb 07 2018