This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294079 #10 Feb 23 2018 11:08:30 %S A294079 0,1,1,0,1,-1,1,0,0,-1,1,1,1,-1,-1,0,1,1,1,1,-1,-1,1,-1,0,-1,0,1,1,1, %T A294079 1,0,-1,-1,-1,-1,1,-1,-1,-1,1,2,1,1,1,-1,1,1,0,1,-1,1,1,-1,-1,-1,-1, %U A294079 -1,1,-3,1,-1,1,0,-1,2,1,1,-1,1,1,2,1,-1,1,1,-1,2,1,1,0,-1,1,-2,-1,-1,-1,-1,1,-3,-1 %N A294079 Strict Moebius function of the multiorder of integer partitions indexed by Heinz numbers. %C A294079 By convention a(1) = 0. %C A294079 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %F A294079 mu(y) = Sum_{g(t)=y} (-1)^d(t), where the sum is over all strict trees (A273873) whose multiset of leaves is the integer partition y, and d(t) is the number of non-leaf nodes in t. %t A294079 nn=120; %t A294079 ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}]; %t A294079 tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns]; %t A294079 qmu[y_]:=qmu[y]=If[Length[y]===1,1,-Sum[Times@@qmu/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,UnsameQ@@#]&]}]]; %t A294079 qmu/@ptns %Y A294079 Cf. A000041, A000720, A056239, A063834, A196545, A273873, A289501, A294018, A294019, A296150, A299201, A299202, A299203. %K A294079 sign %O A294079 1,42 %A A294079 _Gus Wiseman_, Feb 07 2018