This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294105 #22 Oct 30 2017 19:50:07 %S A294105 1,1,1,1,2,1,1,1,7,2,1,1,26,1,1,1,96,1,12,1,345,1,1,1,1252,2,1,76, %T A294105 4544,1,1,1,17473,1,1,1,127654,1,1,1,217286,1,1,1,788674,2490,1,1, %U A294105 3182706,2,28,1,10390321,1,14128,1,37713313,1,1,1,136886433,1,1,80396,579739960,1,1,1,1803399103,1,1 %N A294105 Number of compositions (ordered partitions) of n into squares dividing n. %H A294105 Alois P. Heinz, <a href="/A294105/b294105.txt">Table of n, a(n) for n = 0..2500</a> %H A294105 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A294105 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %e A294105 a(8) = 7 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are squares {1, 4} therefore we have [4, 4], [4, 1, 1, 1, 1], [1, 4, 1, 1, 1], [1, 1, 4, 1, 1], [1, 1, 1, 4, 1], [1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1]. %p A294105 a:= proc(n) option remember; local b, l; %p A294105 l, b:= select(issqr, numtheory[divisors](n)), %p A294105 proc(m) option remember; `if`(m=0, 1, %p A294105 add(`if`(j>m, 0, b(m-j)), j=l)) %p A294105 end; b(n) %p A294105 end: %p A294105 seq(a(n), n=0..50); # _Alois P. Heinz_, Oct 30 2017 %t A294105 Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] == 0 && IntegerQ[k^(1/2)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 70}] %Y A294105 Cf. A006456, A046951, A100346, A284345. %K A294105 nonn %O A294105 0,5 %A A294105 _Ilya Gutkovskiy_, Oct 28 2017