This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294135 #12 Nov 02 2017 15:39:22 %S A294135 5,11,17,257,449,1601,6577,20353,25601,40961,65537,95873,163841, %T A294135 176129,1179649,8452097,13631489,26419201,32310529,38031361,56867009, %U A294135 59637761,144310273,480865793,697434113,1572864001,2013265921,7547650049,62872289281,483049603073 %N A294135 Sorted list of prime factors of numbers of the form 9^(2^m) + 2^(2^m) with m >= 0. %C A294135 Primes p other than 7 such that the multiplicative order of 9/2 (mod p) is a power of 2. %H A294135 Arkadiusz Wesolowski, <a href="/A294135/b294135.txt">Table of n, a(n) for n = 1..43</a> %H A294135 Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-98-00891-6">Factors of generalized Fermat numbers</a>, Math. Comp. 67 (1998), no. 221, pp. 441-446. %H A294135 Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-05-01816-8">Table errata to “Factors of generalized Fermat numbers”</a>, Math. Comp. 74 (2005), no. 252, p. 2099. %H A294135 Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-10-02371-9">Table errata 2 to "Factors of generalized Fermat numbers"</a>, Math. Comp. 80 (2011), pp. 1865-1866. %o A294135 (PARI) print1(5, ", "11, ", "); forprime(p=17, 483049603073, z=znorder(Mod(9/2, p)); if(2^ispower(z)==z, print1(p, ", "))); %Y A294135 Cf. A294132, A294133, A294134, A294136. %K A294135 nonn %O A294135 1,1 %A A294135 _Arkadiusz Wesolowski_, Oct 23 2017