cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294139 Sum of the areas of the distinct rectangles (and the areas of the squares on their sides) with positive integer sides such that L + W = n, W < L.

This page as a plain text file.
%I A294139 #49 Oct 14 2024 11:21:50
%S A294139 0,0,12,23,70,105,210,282,468,590,880,1065,1482,1743,2310,2660,3400,
%T A294139 3852,4788,5355,6510,7205,8602,9438,11100,12090,14040,15197,17458,
%U A294139 18795,21390,22920,25872,27608,30940,32895,36630,38817,42978,45410,50020,52710,57792
%N A294139 Sum of the areas of the distinct rectangles (and the areas of the squares on their sides) with positive integer sides such that L + W = n, W < L.
%H A294139 Sela Fried, <a href="/A294139/a294139.pdf">On the ordinary generating function of A294139 and A307684</a>, 2024.
%H A294139 Sela Fried, <a href="https://arxiv.org/abs/2410.07237">Proofs of some Conjectures from the OEIS</a>, arXiv:2410.07237 [math.NT], 2024. See p. 10.
%H A294139 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).
%F A294139 a(n) = Sum_{i=1..floor((n-1)/2)} 2*i^2 + 2*(n-i)^2 + i*(n-i).
%F A294139 Conjectures from _Colin Barker_, Nov 01 2017: (Start)
%F A294139 G.f.: x^3*(12 + 11*x + 11*x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3).
%F A294139 a(n) = n*(6*n - 1)*(n - 2) / 8 for n even.
%F A294139 a(n) = n*(3*n - 1)*(n - 1) / 4 for n odd.
%F A294139 a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7. (End)
%F A294139 a(n) = n*(4-21*n+12*n^2-5*n*(-1)^n)/16. - _Wesley Ivan Hurt_, Dec 02 2023
%F A294139 The first three conjectures of Barker are true. See links. - _Sela Fried_, Aug 11 2024.
%t A294139 Table[ Sum[2 i^2 + 2 (n - i)^2 + i (n - i), {i, Floor[(n-1)/2]}], {n, 40}]
%o A294139 (Magma) [n*(4-21*n+12*n^2-5*n*(-1)^n)/16 : n in [1..60]]; // _Wesley Ivan Hurt_, Dec 02 2023
%Y A294139 Cf. A294473.
%K A294139 nonn,easy
%O A294139 1,3
%A A294139 _Wesley Ivan Hurt_, Oct 31 2017
%E A294139 Signature for linear recurrence taken from first formula in formula section.