This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294153 #20 Nov 03 2017 03:40:48 %S A294153 0,1,256,512,1152,1728,1920,3072,3456,7776,11664,12800,12960,20736, %T A294153 23328,52488,72000,78732,81920,86400,87480,100352,110208,124800, %U A294153 139968,153216,157464,200000,219520,263424,294912,321024,336000,354294,400000,486000,486720,531441 %N A294153 Numbers k = a * b, such that k' = a' * b' where k', a' and b' are the arithmetic derivatives of k, a and b. %C A294153 A046311 is a subset of this sequence. %C A294153 Some numbers admit more than one couple of divisors a, b: 3456 = 8 * 432 = 54 * 64 and 3456' = 15552 = 8' * 432' = 12 * 1296 = 54' * 64' = 81 * 192. %C A294153 Apart from the first term, squares of A165558 are part of the sequence. In A165558 n' = 2 * n and therefore (n^2)' = 2 * n * n' = 2 * n * 2 * n = (2 * n)^2. Thus n^2 = n * n and (n^2)' = n' * n'. %H A294153 Paolo P. Lava, <a href="/A294153/b294153.txt">Table of n, a(n) for n = 1..100</a> %e A294153 a(0) = 0 because 0 = 0 * b and 0' = 0' * b' = 0; %e A294153 a(1) = 1 because 1 = 1 * 1 and 1' = 1' * 1' = 0; %e A294153 a(2) = 256 because 256 = 16 * 16 and 256' = 16' * 16' = 32 * 32 = 1024; %e A294153 a(3) = 512 because 512 = 8 * 64 and 512' = 8' * 64' = 12 * 192 = 2304. %p A294153 with(numtheory): P:=proc(q) local a,b,c,j,k,n,p; %p A294153 for n from 1 to q do j:=sort([op(divisors(n))]); %p A294153 for k from 2 to trunc((nops(j)+1)/2) do %p A294153 a:=j[k]*add(op(2,p)/op(1,p), p=ifactors(j[k])[2]); %p A294153 b:=(n/j[k])*add(op(2,p)/op(1,p), p=ifactors(n/j[k])[2]); %p A294153 c:=n*add(op(2,p)/op(1,p), p=ifactors(n)[2]); %p A294153 if c=a*b then print(n); break; fi; od; od; end: P(10^6); %Y A294153 Cf. A003415, A046311, A165558. %K A294153 nonn %O A294153 1,3 %A A294153 _Paolo P. Lava_, Oct 24 2017